$\newcommand{\angles}[1]{\left\langle\,{#1}\,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,\mathrm{Li}_{#1}}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\color{#f00}{I} & \equiv
\int_{0}^{1}{\pars{1 - x}\pars{x - 3} \over 1 + x^{2}}
\,{\dd x \over \ln\pars{x}} =
\int_{0}^{1}{3 - x \over 1 + x^{2}}\,\
\overbrace{{x - 1 \over \ln\pars{x}}}^{\ds{4\int_{0}^{1/4}x^{4y}\,\dd y}}\
\,\dd x
\\[3mm] & =
4\int_{0}^{1/4}\int_{0}^{1}{3x^{4y} - x^{4y + 1} \over 1 + x^{2}}\,\dd x\,\dd y =
4\int_{0}^{1/4}\int_{0}^{1}
{\pars{3x^{4y} - x^{4y + 1}}\pars{1 - x^{2}} \over 1 - x^{4}}\,\dd x\,\dd y
\\[3mm] & =
4\int_{0}^{1/4}\int_{0}^{1}
{3x^{4y} - 3x^{4y + 2} - x^{4y + 1} + x^{4y + 3}\over 1 - x^{4}}\,\dd x\,\dd y
\\[3mm] & \stackrel{x^{4}\ \mapsto\ x}{=}\
\int_{0}^{1/4}\int_{0}^{1}
{3x^{y - 3/4} - 3x^{y - 1/4} - x^{y - 1/2} + x^{y}\over 1 - x}\,\dd x\,\dd y
\\[8mm] & =
\int_{0}^{1/4}\left(%
3\int_{0}^{1}{1 - x^{y - 1/4}\over 1 - x}\,\dd x +
\int_{0}^{1}{1 - x^{y - 1/2}\over 1 - x}\,\dd x\right.
\\[3mm] & \left.\phantom{\int_{0}^{1/4}\pars{}}-
3\int_{0}^{1}{1 - x^{y - 3/4}\over 1 - x}\,\dd x -
\int_{0}^{1}{1 - x^{y}\over 1 - x}\,\dd x\right)\,\dd y
\\[8mm] & =
\int_{0}^{1/4}\bracks{3\,\Psi\pars{y + {3 \over 4}} +
\Psi\pars{y + \half} - 3\,\Psi\pars{y + {1 \over 4}} -\Psi\pars{y + 1}}\,\dd y
\\[3mm] & =
\left.\ln\pars{\Gamma^{\,3}\pars{y + 3/4}\Gamma\pars{y + 1/2} \over \Gamma^{\,3}\pars{y + 1/4}\Gamma\pars{y + 1}}\right\vert_{\ 0}^{\ 1/4} =
\ln\pars{{\Gamma^{\,3}\pars{1}\Gamma\pars{3/4} \over \Gamma^{\,3}\pars{1/2}\Gamma\pars{5/4}}
{\Gamma^{\,3}\pars{1/4}\Gamma\pars{1} \over \Gamma^{\,3}\pars{3/4}\Gamma\pars{1/2}}}
\\[3mm] & =
\ln\pars{{1 \over \Gamma^{\,4}\pars{1/2}}\
{\Gamma^{\,3}\pars{1/4} \over \Gamma\pars{5/4}\Gamma^{\,2}\pars{3/4}}}\tag{1}
\end{align}
\begin{equation}
\left\lbrace\begin{array}{rcl}
\ds{1 \over \Gamma^{\,4}\pars{1/2}} & \ds{=} & \ds{1 \over \pi^{2}}\quad
\mbox{because}\quad \ds{\Gamma\pars{\half} = \root{\pi}}
\\[5mm]
\ds{\Gamma^{\,3}\pars{1/4} \over \Gamma\pars{5/4}\Gamma^{\,2}\pars{3/4}}
& \ds{=} &
\ds{{\Gamma^{\,3}\pars{1/4} \over \pars{1/4}\Gamma\pars{1/4}\Gamma^{\,2}\pars{3/4}} =
4\bracks{\Gamma\pars{1/4} \over \Gamma\pars{3/4}}^{2}}
\\[1mm] & \ds{=} &
\ds{4\bracks{{1 \over \Gamma\pars{3/4}}\,{\pi \over \Gamma\pars{3/4}\sin\pars{\pi/4}}}^{2} =
{8\pi^{2} \over \Gamma^{\,4}\pars{3/4}}}
\end{array}\right.\tag{2}
\end{equation}
With $\pars{1}$ and $\pars{2}$:
$$
\color{#f00}{I} \equiv
\int_{0}^{1}{\pars{1 - x}\pars{x - 3} \over 1 + x^{2}}
\,{\dd x \over \ln\pars{x}} =
\color{#f00}{\ln\pars{8 \over \Gamma^{\,4}\pars{3/4}}}
$$