This question is a sequel to this previous question. As before, some background information is needed first as follows from my textbook:
The standard form of Bessel's differential equation is $$x^2y^{\prime\prime}+xy^{\prime} + (x^2 - p^2)y=0\tag{1}$$ where $(1)$ has a first solution given by $$\fbox{$J_p(x)=\sum_{n=0}^\infty\frac{(-1)^n}{\Gamma(n+1)\Gamma(n+1+p)}\left(\frac{x}{2}\right)^{2n+p}$}\tag{2}$$ and a second solution given by $$\fbox{$J_{-p}(x)=\sum_{n=0}^\infty\frac{(-1)^n}{\Gamma(n+1)\Gamma(n+1-p)}\left(\frac{x}{2}\right)^{2n-p}$}\tag{3}$$ where $J_p(x)$ is called the Bessel function of the first kind of order $p$.
Although $J_{−p}(x)$ is a satisfactory second solution when $p$ is not an integer, it is customary to use a linear combination of $J_p(x)$ and $J_{−p}(x)$ as the second solution. Any combination of $J_p(x)$ and $J_{−p}(x)$ is a satisfactory second solution of Bessel’s equation. The combination which is used is called the Neumann (or the Weber) function and is denoted by $N_p(x)$ where $$N_p(x)=\frac{\cos(\pi p)J_p(x)-J_{-p}(x)}{\sin(\pi p)}\tag{4}$$
Full details on the derivation of $(2)$ as a solution to $(1)$ can be found here in my previous question.
Many differential equations occur in practice that are not of the standard form $(1)$ but whose solutions can be written in terms of Bessel functions. It can be shown that the differential equation: $$\fbox{$y^{\prime\prime}+\left(\frac{1-2a}{x}\right)y^{\prime}+\left[\left(bcx^{c-1}\right)^2+\frac{a^2-p^2c^2}{x^2}\right]y=0$}\tag{5}$$ has the solution $$\fbox{$y=x^aZ_p\left(bx^c\right)$}\tag{6}$$ where $Z_p$ stands for $J_p$ or $N_p$ or any linear combination of them, and $a,b,c,p$ are constants.
To see how to use this, let us “solve” the differential equation: $$y^{\prime\prime}+9xy=0\tag{7}$$ If $(7)$ is of the type $(5)$, then we must have $$1-2a=0$$ $$2(c-1)=1$$ $$(bc)^2=9$$ $$a^2-p^2c^2=0$$ from these $4$ equations we find $$a=\dfrac12$$ $$c=\dfrac32$$ $$b=2$$ $$p=\dfrac{a}{c}=\dfrac13$$
Then the solution of $(7)$ is $$y=x^{1/2}Z_{1/3}\left(2x^{3/2}\right)\tag{8}$$ This means that the general solution of $(7)$ is $$y=x^{1/2}\left[AJ_{1/3}\left(2x^{3/2}\right)+BN_{1/3}\left(2x^{3/2}\right)\right]\tag{9}$$ where $A$ and $B$ are arbitrary constants.
My goal is to show that $(9)$ is a solution to $(7)$.
I will be writing out almost all intermediate steps; so if an error exists it will be easier to locate.
Starting from $(9)$ and substituting $(2)$, $(3)$ and $(4)$: \begin{align}y &=x^{1/2}\left[AJ_{1/3}\left(2x^{3/2}\right)+BN_{1/3}\left(2x^{3/2}\right)\right]\\&=x^{1/2}\left[AJ_{1/3}\left(2x^{3/2}\right)+\frac{\frac12 B J_{1/3}-B J_{-1/3}\left(2x^{3/2}\right)}{\left(\sqrt{3}/2\right)}\right]\\&= x^{1/2}\left[A J_{1/3}\left(2x^{3/2}\right)+\frac{ B J_{1/3}-2B J_{-1/3}\left(2x^{3/2}\right)}{\sqrt{3}}\right]\\&=x^{1/2}\left[A+\frac{B}{\sqrt{3}}\right]\sum_{n=0}^\infty\frac{(-1)^n}{\Gamma(n+1)\Gamma(n+\frac43)}\left(\frac{2x^{3/2}}{2}\right)^{2n+1/3}\quad-\frac{2Bx^{1/2}}{\sqrt{3}}\sum_{n=0}^\infty\frac{(-1)^n}{\Gamma(n+1)\Gamma(n+\frac23)}\left(\frac{2x^{3/2}}{2}\right)^{2n-1/3}\\&\fbox{$y=x^{1/2}\left[A+\frac{B}{\sqrt{3}}\right]\sum_{n=0}^\infty\frac{(-1)^n}{\Gamma(n+1)\Gamma(n+\frac43)}x^{3n+1/2}-\frac{2Bx^{1/2}}{\sqrt{3}}\sum_{n=0}^\infty\frac{(-1)^n}{\Gamma(n+1)\Gamma(n+\frac23)}x^{3n-1/2}$}\end{align}
Now taking the derivative of $y$ with respect to $x$ by use of the product rule: $$\fbox{$y^{\prime}=\frac12x^{-1/2}\left[A+\frac{B}{\sqrt{3}}\right]\sum_{n=0}^\infty\frac{(-1)^n}{\Gamma(n+1)\Gamma(n+\frac43)}x^{3n+1/2}\quad+x^{1/2}\left[A+\frac{B}{\sqrt{3}}\right]\sum_{n=0}^\infty\frac{(-1)^n\left(3n+\frac12\right)x^{3n-1/2}}{\Gamma(n+1)\Gamma(n+\frac43)}\,\,\,-\,\frac{Bx^{-1/2}}{\sqrt{3}}\sum_{n=0}^\infty\frac{(-1)^n}{\Gamma(n+1)\Gamma(n+\frac23)}x^{3n-1/2}-\frac{2Bx^{1/2}}{\sqrt{3}}\sum_{n=0}^\infty\frac{(-1)^n\left(3n-\frac12\right)x^{3n-3/2}}{\Gamma(n+1)\Gamma(n+\frac23)}$}$$
Now taking the derivative of $y^{\prime}$ with respect to $x$ by use of the product rule again:
\begin{align}y^{\prime\prime}=-\frac14x^{-3/2}\left[A+\frac{B}{\sqrt{3}}\right]\sum_{n=0}^\infty\frac{(-1)^n}{\Gamma(n+1)\Gamma(n+\frac43)}x^{3n+1/2}\quad+\frac12x^{-1/2}\left[A+\frac{B}{\sqrt{3}}\right]\sum_{n=0}^\infty\frac{(-1)^n\left(3n+\frac12\right)x^{3n-1/2}}{\Gamma(n+1)\Gamma(n+\frac43)}\quad+\frac12x^{-1/2}\left[A+\frac{B}{\sqrt{3}}\right]\sum_{n=0}^\infty\frac{(-1)^n\left(3n+\frac12\right)x^{3n-1/2}}{\Gamma(n+1)\Gamma(n+\frac43)}\quad+x^{1/2}\left[A+\frac{B}{\sqrt{3}}\right]\sum_{n=0}^\infty\frac{(-1)^n\left(3n+\frac12\right)\left(3n-\frac12\right)x^{3n-3/2}}{\Gamma(n+1)\Gamma(n+\frac43)}\quad+\frac{Bx^{-3/2}}{2\sqrt{3}}\sum_{n=0}^\infty\frac{(-1)^n}{\Gamma(n+1)\Gamma(n+\frac23)}x^{3n-1/2}-\,\,\,\frac{Bx^{-1/2}}{\sqrt{3}}\sum_{n=0}^\infty\frac{(-1)^n\left(3n-\frac12\right)x^{3n-3/2}}{\Gamma(n+1)\Gamma(n+\frac23)}-\frac{Bx^{-1/2}}{\sqrt{3}}\sum_{n=0}^\infty\frac{(-1)^n\left(3n-\frac12\right)x^{3n-3/2}}{\Gamma(n+1)\Gamma(n+\frac23)}-\frac{2Bx^{1/2}}{\sqrt{3}}\sum_{n=0}^\infty\frac{(-1)^n\left(3n-\frac12\right)\left(3n-\frac32\right)x^{3n-5/2}}{\Gamma(n+1)\Gamma(n+\frac23)}\end{align}
Substitution of $y^{\prime\prime}$ and $y$ into $$y^{\prime\prime}+9xy=0\tag{7}$$ gives
\begin{align}-\frac14x^{-3/2}\left[A+\frac{B}{\sqrt{3}}\right]\sum_{n=0}^\infty\frac{(-1)^n}{\Gamma(n+1)\Gamma(n+\frac43)}x^{3n+1/2}\quad+\frac12x^{-1/2}\left[A+\frac{B}{\sqrt{3}}\right]\sum_{n=0}^\infty\frac{(-1)^n\left(3n+\frac12\right)x^{3n-1/2}}{\Gamma(n+1)\Gamma(n+\frac43)}\quad+\frac12x^{-1/2}\left[A+\frac{B}{\sqrt{3}}\right]\sum_{n=0}^\infty\frac{(-1)^n\left(3n+\frac12\right)x^{3n-1/2}}{\Gamma(n+1)\Gamma(n+\frac43)}\quad+x^{1/2}\left[A+\frac{B}{\sqrt{3}}\right]\sum_{n=0}^\infty\frac{(-1)^n\left(3n+\frac12\right)\left(3n-\frac12\right)x^{3n-3/2}}{\Gamma(n+1)\Gamma(n+\frac43)}\quad+\frac{Bx^{-3/2}}{2\sqrt{3}}\sum_{n=0}^\infty\frac{(-1)^n}{\Gamma(n+1)\Gamma(n+\frac23)}x^{3n-1/2}-\,\,\,\frac{Bx^{-1/2}}{\sqrt{3}}\sum_{n=0}^\infty\frac{(-1)^n\left(3n-\frac12\right)x^{3n-3/2}}{\Gamma(n+1)\Gamma(n+\frac23)}-\frac{Bx^{-1/2}}{\sqrt{3}}\sum_{n=0}^\infty\frac{(-1)^n\left(3n-\frac12\right)x^{3n-3/2}}{\Gamma(n+1)\Gamma(n+\frac23)}-\frac{2Bx^{1/2}}{\sqrt{3}}\sum_{n=0}^\infty\frac{(-1)^n\left(3n-\frac12\right)\left(3n-\frac32\right)x^{3n-5/2}}{\Gamma(n+1)\Gamma(n+\frac23)}+9x^{3/2}\left[A+\frac{B}{\sqrt{3}}\right]\sum_{n=0}^\infty\frac{(-1)^n}{\Gamma(n+1)\Gamma(n+\frac43)}x^{3n+1/2}-\frac{18Bx^{3/2}}{\sqrt{3}}\sum_{n=0}^\infty\frac{(-1)^n}{\Gamma(n+1)\Gamma(n+\frac23)}x^{3n-1/2}\end{align}
Simplifying a little gives
\begin{align}-\frac14x^{-1}\left[A+\frac{B}{\sqrt{3}}\right]\sum_{n=0}^\infty\frac{(-1)^n}{\Gamma(n+1)\Gamma(n+\frac43)}x^{3n}+\frac12x^{-1}\left[A+\frac{B}{\sqrt{3}}\right]\sum_{n=0}^\infty\frac{(-1)^n\left(3n+\frac12\right)x^{3n}}{\Gamma(n+1)\Gamma(n+\frac43)}\quad+\frac12x^{-1}\left[A+\frac{B}{\sqrt{3}}\right]\sum_{n=0}^\infty\frac{(-1)^n\left(3n+\frac12\right)x^{3n}}{\Gamma(n+1)\Gamma(n+\frac43)}\quad+x^{-1}\left[A+\frac{B}{\sqrt{3}}\right]\sum_{n=0}^\infty\frac{(-1)^n\left(3n+\frac12\right)\left(3n-\frac12\right)x^{3n}}{\Gamma(n+1)\Gamma(n+\frac43)}+\frac{Bx^{-2}}{2\sqrt{3}}\sum_{n=0}^\infty\frac{(-1)^n}{\Gamma(n+1)\Gamma(n+\frac23)}x^{3n}-\frac{Bx^{-2}}{\sqrt{3}}\sum_{n=0}^\infty\frac{(-1)^n\left(3n-\frac12\right)x^{3n}}{\Gamma(n+1)\Gamma(n+\frac23)}-\frac{Bx^{-2}}{\sqrt{3}}\sum_{n=0}^\infty\frac{(-1)^n\left(3n-\frac12\right)x^{3n}}{\Gamma(n+1)\Gamma(n+\frac23)}\quad-\frac{2Bx^{-2}}{\sqrt{3}}\sum_{n=0}^\infty\frac{(-1)^n\left(3n-\frac12\right)\left(3n-\frac32\right)x^{3n}}{\Gamma(n+1)\Gamma(n+\frac23)}+9x^{2}\left[A+\frac{B}{\sqrt{3}}\right]\sum_{n=0}^\infty\frac{(-1)^n}{\Gamma(n+1)\Gamma(n+\frac43)}x^{3n}-\frac{18Bx}{\sqrt{3}}\sum_{n=0}^\infty\frac{(-1)^n}{\Gamma(n+1)\Gamma(n+\frac23)}x^{3n}\end{align}
Expanding out some of the summations gives
\begin{align}-A\frac14x^{-1}\sum_{n=0}^\infty\frac{(-1)^n}{\Gamma(n+1)\Gamma(n+\frac43)}x^{3n}-\frac{Bx^{-1}}{\sqrt{3}}\sum_{n=0}^\infty\frac{(-1)^n}{\Gamma(n+1)\Gamma(n+\frac43)}x^{3n}\quad+x^{-1}\left[A+\frac{B}{\sqrt{3}}\right]\sum_{n=0}^\infty\frac{(-1)^n\left(3n+\frac12\right)x^{3n}}{\Gamma(n+1)\Gamma(n+\frac43)}\quad+x^{-1}\left[A+\frac{B}{\sqrt{3}}\right]\sum_{n=0}^\infty\frac{(-1)^n\left(9n^2-\frac14\right)x^{3n}}{\Gamma(n+1)\Gamma(n+\frac43)}+\frac{Bx^{-2}}{2\sqrt{3}}\sum_{n=0}^\infty\frac{(-1)^n}{\Gamma(n+1)\Gamma(n+\frac23)}x^{3n}-2\sqrt{3}Bx^{-2}\sum_{n=0}^\infty\frac{n(-1)^nx^{3n}}{\Gamma(n+1)\Gamma(n+\frac23)}\quad+\frac{Bx^{-2}}{\sqrt{3}}\sum_{n=0}^\infty\frac{(-1)^nx^{3n}}{\Gamma(n+1)\Gamma(n+\frac23)}\quad-2\sqrt{3}Bx^{-2}\sum_{n=0}^\infty\frac{(-1)^n\left(3n^2-2n+\frac14\right)x^{3n}}{\Gamma(n+1)\Gamma(n+\frac23)}\quad+9Ax^{2}\sum_{n=0}^\infty\frac{(-1)^n}{\Gamma(n+1)\Gamma(n+\frac43)}x^{3n}\quad+\frac{B}{\sqrt{3}}\sum_{n=0}^\infty\frac{(-1)^n}{\Gamma(n+1)\Gamma(n+\frac43)}x^{3n}\quad-\frac{18Bx}{\sqrt{3}}\sum_{n=0}^\infty\frac{(-1)^n}{\Gamma(n+1)\Gamma(n+\frac23)}x^{3n}\end{align}
Does anyone have any ideas on how I can show this is equal to zero?