Unfortunately, the opposite direction is ture.$\renewcommand{\l}[1]{\lVert #1\rVert}\def \yb{\frac{1}{2}}$
Suppose $u$ is a positive trace class operator and $\{e_\alpha\}_{\alpha\in\Gamma}$ is a basis of $H$,
then $\forall\varepsilon>0,$ there exists a finite subset $\Gamma_0$ of $\Gamma$ such that
\begin{equation*}
\lvert\sum_{\alpha\in \Gamma_0}\langle u e_\alpha,e_\alpha\rangle-\l{u}_1\rvert <\varepsilon,
\end{equation*}
i.e.$\newcommand{\Tr}{\operatorname{trace}}$
\begin{equation*}
\lvert\Tr(p)-\Tr(u)\rvert<\varepsilon,
\end{equation*}
where
\begin{equation*}
p=\sum_{\alpha\in \Gamma_0}u^\yb e_\alpha\otimes e_\alpha u^\yb
\end{equation*}
is a finite-rank operator on $H$.
Note that $\l{p-u}\leq\l{p-u}_1=\Tr(\lvert u-p\rvert)=\Tr(u-p), $ so $u\in K(H)$.