If given the function $$f(x) = \frac{-x^3 + 1}{x^2 - 1}$$ one can clearly see that it is not defined when $x = \pm1$.
We can rewrite the equation by factoring out $(x-1)$ in both the numerator and the denominator $$f(x) = \frac{-(x-1)(x^2+x+1)}{(x+1)(x-1)} = - \frac{x^2 +x + 1}{x+1}$$
Now $f(x)$ is defined for $x = 1$. Why? How can this be? How can a function change properties when simplifying it? Is it only the most simple version of a function that defines its properties? Please help me understand.