Given $$\int_0^{\infty}e^{-x^2}dx = \frac{\sqrt{\pi}}{2}$$ evaluate: $$\int_0^{\infty}e^{-a^2x^2-\frac{b^2}{x^2}}dx. $$
I can find that $$\left(ax+\frac{b}{x}\right)^2 = a^2x^2+2ab+\frac{b^2}{x^2}$$
therefore: $$\int_0^{\infty}e^{-a^2x^2-\frac{b^2}{x^2}}dx = e^{2ab}\int_0^{\infty}e^{-\left(ax+\frac{b}{x}\right)^2}dx$$
but I can't find any clue then.