0

Show that $(\omega +3)\cdot\omega=\omega\cdot\omega$.

Is this just $(\omega +3)\cdot\omega=(\omega +\omega)\cdot\omega=\omega\cdot\omega$?

Also, could someone suggest a good book for set theory?

Zzz
  • 691

3 Answers3

5

By using only that the ordinal product is associative, non-decreasing in each variable, and the fact that $2\cdot\omega=\omega$, you can make your argument formal.

Since $\cdot$ is monotonic, $$ (\omega +3)\cdot\omega\geq\omega\cdot\omega. $$ By the same reason, $$ (\omega +3)\cdot\omega\leq(\omega +\omega)\cdot\omega=(\omega\cdot 2)\cdot\omega= \omega\cdot(2\cdot\omega), $$ where the last equality follows by associativity. Finally, since $2\cdot\omega=\omega$, we obtain $$ (\omega +3)\cdot\omega\leq\omega\cdot(2\cdot\omega) = \omega\cdot\omega. $$ Hence we have both inequalities.

4

Note that the following lines follow immediately from the definition of ordinal multiplication $\alpha \cdot \lambda$ for limit ordinals $\lambda$. On the one hand, we have

$ \begin{align*} (\omega + 3) \cdot \omega =& \sup \{ (\omega + 3) \cdot n \mid n < \omega \} \\ \ge& \sup \{ \omega \cdot n \mid n < \omega \} \\ =& \omega \cdot \omega. \end{align*} $

On the other hand

$ \begin{align*} (\omega + 3) \cdot \omega =& \sup \{ (\omega + 3) \cdot n \mid n < \omega \} \\ \le& \sup \{ (\omega + \omega) \cdot n \mid n < \omega \} \\ =& \sup \{ \omega \cdot (n+1) \mid n < \omega \} \\ =& \omega \cdot \omega. \end{align*} $

Hence $(\omega + 3) \cdot \omega = \omega \cdot \omega$.

Stefan Mesken
  • 16,651
  • I think you have to use normality (or continuity) of the ordinal product to justify last displayed step (i.e., $\sup { \omega \cdot (n+1) \mid n < \omega } = \omega \cdot \omega$.) – Pedro Sánchez Terraf Jun 09 '16 at 00:23
  • @PedroSánchezTerraf ${\omega \cdot (n+1) \mid n < \omega } = {\omega \cdot n \mid 0 < n < \omega } \subseteq { \omega \cdot n \mid n < \omega }$. Hence $\sup { \omega \cdot (n+1) \mid n < \omega } \le \omega \cdot \omega$ and monotonicity actually yields equality. – Stefan Mesken Jun 09 '16 at 07:10
  • That's perfect; the point I wanted to make is that you need to use a bit more than the bare definition of product. – Pedro Sánchez Terraf Jun 09 '16 at 11:07
  • Could you please elaborate on how to get $\sup { (\omega + \omega) \cdot n \mid n < \omega } = \sup { \omega \cdot (n+1) \mid n < \omega }$? – Akira Dec 01 '18 at 08:18
  • @LeAnhDung Note that, for $0 < n < \omega$, $\omega \cdot (n+1) = \omega \cdot n + \omega \le \omega \cdot n + \omega \cdot n = (\omega + \omega) \cdot n = (\omega \cdot 2) \cdot n = \omega \cdot (2n)$. – Stefan Mesken Dec 01 '18 at 11:02
  • Please confirm my understanding! We have $(\omega + \omega) \cdot n=(\omega \cdot 2) \cdot n=\omega \cdot (2n)$. Thus our job is to prove $\sup { \omega \cdot (n+1) \mid n < \omega } = \sup { \omega \cdot (2n) \mid n < \omega }$. We have ${ \omega \cdot (2n) \mid 0<n < \omega } \subseteq { \omega \cdot (n+1) \mid 0<n < \omega }$ and $\forall 0<n < \omega,\exists 0<n' < \omega:\omega \cdot (n+1)<\omega \cdot (2n')$. The result is then followed. – Akira Dec 01 '18 at 11:35
  • 1
    @LeAnhDung Yep, that's it. – Stefan Mesken Dec 01 '18 at 11:37
  • Thank you for your dedicated help ;) – Akira Dec 01 '18 at 11:37
  • 1
    @LeAnhDung You're most welcome! – Stefan Mesken Dec 01 '18 at 11:38
3

\begin{align*}(\omega+3)+(\omega+3)+(\omega+3)\dots&=\omega+(3+\omega)+(3+\omega)+(3+\omega)+(3+\omega)\dots \\ &=\omega+\omega+\omega+\omega+\dots \\ &=\omega\cdot\omega \end{align*}

Eric Wofsey
  • 330,363
Jacob Wakem
  • 2,382