Show that $(\omega +3)\cdot\omega=\omega\cdot\omega$.
Is this just $(\omega +3)\cdot\omega=(\omega +\omega)\cdot\omega=\omega\cdot\omega$?
Also, could someone suggest a good book for set theory?
Show that $(\omega +3)\cdot\omega=\omega\cdot\omega$.
Is this just $(\omega +3)\cdot\omega=(\omega +\omega)\cdot\omega=\omega\cdot\omega$?
Also, could someone suggest a good book for set theory?
By using only that the ordinal product is associative, non-decreasing in each variable, and the fact that $2\cdot\omega=\omega$, you can make your argument formal.
Since $\cdot$ is monotonic, $$ (\omega +3)\cdot\omega\geq\omega\cdot\omega. $$ By the same reason, $$ (\omega +3)\cdot\omega\leq(\omega +\omega)\cdot\omega=(\omega\cdot 2)\cdot\omega= \omega\cdot(2\cdot\omega), $$ where the last equality follows by associativity. Finally, since $2\cdot\omega=\omega$, we obtain $$ (\omega +3)\cdot\omega\leq\omega\cdot(2\cdot\omega) = \omega\cdot\omega. $$ Hence we have both inequalities.
Note that the following lines follow immediately from the definition of ordinal multiplication $\alpha \cdot \lambda$ for limit ordinals $\lambda$. On the one hand, we have
$ \begin{align*} (\omega + 3) \cdot \omega =& \sup \{ (\omega + 3) \cdot n \mid n < \omega \} \\ \ge& \sup \{ \omega \cdot n \mid n < \omega \} \\ =& \omega \cdot \omega. \end{align*} $
On the other hand
$ \begin{align*} (\omega + 3) \cdot \omega =& \sup \{ (\omega + 3) \cdot n \mid n < \omega \} \\ \le& \sup \{ (\omega + \omega) \cdot n \mid n < \omega \} \\ =& \sup \{ \omega \cdot (n+1) \mid n < \omega \} \\ =& \omega \cdot \omega. \end{align*} $
Hence $(\omega + 3) \cdot \omega = \omega \cdot \omega$.
\begin{align*}(\omega+3)+(\omega+3)+(\omega+3)\dots&=\omega+(3+\omega)+(3+\omega)+(3+\omega)+(3+\omega)\dots \\ &=\omega+\omega+\omega+\omega+\dots \\ &=\omega\cdot\omega \end{align*}