Is there any simplified closed form for the following integral?
$\int_0^{\tau}\int_0^{\tau-x_1}\int_0^{\tau-x_2}\dots\int_0^{\tau-x_{n-1}}e^{-\lambda x_1}e^{-\lambda x_2}\dots e^{-\lambda x_n}\ d{x_n}\ \dots d{x_2}\ d{x_1}$
in which
$x_i\ge 0; 1\le i\le n$
We can also define it recursively as follows if it helps:
$F(i,\tau)=\int_{0}^{\tau-x_{i-1}}e^{-\lambda x_{i}}F(i-1,\tau)$
$F(3,\tau)=\int_{0}^{\tau}\int_{0}^{\tau-x_1}\int_{0}^{\tau-x_2}e^{-\lambda x_1}e^{-\lambda x_2}e^{-\lambda x_3}\ dx_3\ dx_2\ dx_1$
$x_i\ge 0; 1\le i\le n$