7

Besides the obvious difference in topological dimension.

If you want to distinguish between $\mathbb{R}$ and $\mathbb{R}^2$, take an open set in the plane, remove a point, then it's still connected. That doesn't work in $\mathbb{R}$. If you want to distinguish between $\mathbb{R}^3$ and $\mathbb{R}^2$, take an open set in $3$-space, remove a point, then its fundamental group is still trivial. That doesn't work in $\mathbb{R}^2$. Similarly, you can use the higher homotopy groups to distinguish $\mathbb{R}^n$ and $\mathbb{R}^{n+1}$.

Is there another subtle topological argument to distinguish Zariski $n$-space and Zariski $n+1$-space?

D_S
  • 33,891
  • 1
    It sounds like you're asking "what's different about these two things, aside from every one of the standard, incredibly important things which we use to distinguish between them?" Do you have a reason why you want to add to an already excellent list of invariants and why you feel the standard choices should be discarded? – Adam Hughes Jun 05 '16 at 22:11
  • 3
    Where did I say I wanted to discard anything? I was particularly impressed with how the associated homotopy groups of a topological space could be used to tell spaces apart. It used to be a novel idea that one could tell spaces apart by equivalence classes of loops, for example. – D_S Jun 05 '16 at 22:15
  • I just wanted to know if some analogue existed for affine space. – D_S Jun 05 '16 at 22:16
  • 6
    But why not dimension? Dimension is arguably the single most important invariant. It's a very useful number which exactly solidifies the intuition that the number of coordinates being different should make an object different. – Adam Hughes Jun 05 '16 at 22:18
  • Dimension is totally baller, I agree. I always approach algebraic geometry from the perspective of commutative algebra when possible. I know $\mathbb{A}^n$ and $\mathbb{A}^{n+1}$ are nonisomorphic varieties because their associated global sections $k[X_1, ... , X_n]$ and $k[X_1, ... , X_{n+1}]$ have dimensions $n$ and $n+1$. – D_S Jun 05 '16 at 22:20
  • 4
    Recently though, I've been studying algebraic groups on which a lot of the theory and intuition seem to come from Lie groups, and commutative algebra seems less useful. I don't know differential geometry or algebraic topology very well, so I'm interested in learning how and where perspectives from these areas can be brought into algebraic geometry. – D_S Jun 05 '16 at 22:22
  • I have a feeling this is going to be hard just because the Zariski topology is so weird and we tend to bring in dimension so early in all treatments of algebraic geometry. Of course the $\mathbb A^n$ have different Chow groups but just the construction of these things needs dimension theory, it seems to me. Maybe $\pi_1^{\text{ét}}$ offers some hope. If you can work that out then maybe that motivates you to learn about the higher homotopy groups, about which I'm completely ignorant. – Hoot Jun 06 '16 at 02:59
  • The dimension argument is also useful because it is independent of what your field $k$ is, even though the actual topology depends on it. I don't think you can find any other purely topological property that works as a difference between any $\mathbb{A}^n$ and $\mathbb{A}^{n+1}$ in general. – Arun Kumar Jun 06 '16 at 17:03

2 Answers2

4

If we would like imitate the case of the natural topology on the real affine spaces: I shall work in the scheme setting and I shall use the Čech and Grothendieck cohomologies!


I start from $\mathbb{A}^1_{\mathbb{R}}\equiv\mathbb{A}^1$; let $X_1=\mathbb{A}^1\setminus\{(x_1)\}$, via Rabinowitsch's trick one can prove that $X_1$ is isomorphic to hyperbola $H=V(xy-1)\subset\mathbb{A}^2$, in other words $X_1$ is an affine variety.

I recall the Serre's Criterion for the affiness of a scheme (see [B], theorem 7.7.8).

Let $S$ be a quasi-compact scheme. $S$ is affine if and only if for any quasi-coherent $\mathcal{O}_S$-module $\mathcal{F}$ one has $H^1(S,\mathcal{F})=0$.

In particular, without change the name, $H^1\left(X_1,\mathcal{O}_{X_1}\right)=0$.

Again, I recall that for any scheme $S$ and for any $\mathcal{O}_S$-module $\mathcal{F}$, $H^1(S,\mathcal{F})$ is in bijection with $\check{H}^1(S,\mathcal{F})$; therefore, I start to study $\check{H}^1\left(X_n,\mathcal{O}_{X_n}\right)$ for any $n\geq2$, where $X_n=\mathbb{A}^n_{\mathbb{R}}\setminus\{(x_1,\dots,x_n)\}$.

First all, the $X_n$'s are not affine, for $n\geq2$; because they are not the spectrum of $\mathcal{O}_{X_n}(X_n)$!

Indeed, let $\mathcal{U}=\{D(x_k)\subset\mathbb{A}^n\}_{k\in\{1,\dots,n\}}$ an affine open covering of $X_n$, where $D(x_k)=Spec\mathbb{R}[x_1,\dots,x_n]_{x_k}$; considering the Čech cocomplex: \begin{equation} 0\to C^0\left(\mathcal{U},\mathcal{O}_{X_n}\right)\stackrel{d_0}{\longrightarrow}C^1\left(\mathcal{U},\mathcal{O}_{X_n}\right)\stackrel{d_1}{\longrightarrow}\dots \end{equation} where:

  1. $C^q\left(\mathcal{U},\mathcal{O}_{X_n}\right)=\displaystyle\prod_{1\leq i_1<\dots<i_{q+1}\leq n}\mathcal{O}_{X_n}\left(D\left(x_{i_1}\dots x_{i_{q+1}}\right)\right)$,

  2. $\left(d^qf\right)_{i_1\dots i_{q+2}}=\displaystyle\sum_{j=1}^{q+2}(-1)^{j+1}f_{i_1\dots\widehat{i_j}\dots i_{q+2}\displaystyle|D\left(x_{i_1}\dots x_{i_{q+2}}\right)}$.

Trivially: \begin{gather*} \mathcal{O}_{X_n}(X_n)\cong\check{H}^0\left(\mathcal{U},\mathcal{O}_{X_n}\right)=\ker d^0=\\ =\left\{(f_1,\dots,f_n)\in\mathcal{O}_{X_n}\left(D\left(x_1\right)\right)\times\dots\times\mathcal{O}_{X_n}\left(D\left(x_n\right)\right)\mid\\ \forall h\neq k\in\{1,\dots,n\},\,f_{h\displaystyle|D(x_hx_k)}=f_{k\displaystyle|D(x_hx_k)}\right\}=\bigcap_{i=1}^n\mathcal{O}_{X_n}(D(x_i))=\mathbb{R}[x_1,\dots,x_n]. \end{gather*} At this point, one can state that $X_1$ is not isomorphic to $X_n$ for $n\geq2$; that is, $\mathbb{A}^1$ can not be isomorphic to $\mathbb{A}^n$ for $n\geq2$.

In consequence to Serre's criterion: \begin{equation*} \forall n\geq2,\,H^1\left(X_n,\mathcal{O}_{X_n}\right)\neq0; \end{equation*} then what are $H^1\left(X_n,\mathcal{O}_{X_n}\right)$'s? The answer is a little bit complicated...

Then I change strategy: by construction $\forall n\geq1,q\geq n,\,C^q\left(\mathcal{U},\mathcal{O}_{X_n}\right)=0$ and therefore $\forall n\geq1,q\geq n,\,\check{H}^q\left(\mathcal{U},\mathcal{O}_{X_n}\right)=0$; in particular: \begin{equation*} \forall n\geq1,\,\check{H}^{n-1}\left(\mathcal{U},\mathcal{O}_{X_n}\right)=\ker d^{n-1}_{\displaystyle/\operatorname{Im}d^{n-2}}=\mathcal{O}_{X_n}\left(D(x_1\dots x_n)\right)_{\displaystyle/\operatorname{Im}d^{n-2}}. \end{equation*}

I recall a Leray's theorem (see [B], theorem 7.7.5)

Let $\mathcal{U}$ be an open covering of a scheme $X$ and $\mathcal{F}$ be an $\mathcal{O}_X$-module. Assume $H^q(U,\mathcal{F})=0$ for any $q\geq1$ and for any finite intersection $U$ of sets in $\mathcal{U}$; then the canonical map $\check{H}^q(\mathcal{U},\mathcal{F})\to\check{H}^q(X,\mathcal{F})$ is bijective for all $q\geq0$.

and the Vanishig Cohomology Theorem for the Affine Schemes (see [B], proposition 7.6.4 and corollary 7.7.7)

Let $S$ be an affine scheme over a ring $R$. Then for any quasi-coherent $\mathcal{O}_S$-module $\mathcal{F}$, one has $\forall q\geq1,\,H^q(S,\mathcal{F})=0$.

By the previous theorem, $\mathcal{U}$ satisfies the hypothesis of Leray's theorem and then \begin{equation*} \forall n\geq1,\,\check{H}^{n-1}\left(X_n,\mathcal{O}_{X_n}\right)\cong\check{H}^{n-1}\left(\mathcal{U},\mathcal{O}_{X_n}\right)=\mathcal{O}_{X_n}\left(D\left(x_1\dots x_n\right)\right)_{\displaystyle/\operatorname{Im}d^{n-2}} \end{equation*} where $\mathcal{O}_{X_n}\left(D\left(x_1\dots x_n\right)\right)=\mathbb{R}[x_1,\dots,x_n]_{x_1\dots x_n}$.

By construction: \begin{gather*} C^{n-2}\left(\mathcal{U},\mathcal{O}_{X_n}\right)\ni\left(\frac{f_1}{x_2^{\alpha_{1,2}}\dots x_n^{\alpha_{1,n}}},\frac{f_2}{x_1^{\alpha_{2,1}}x_3^{\alpha_{2,3}}\dots x_n^{\alpha_{2,n}}},\dots,\frac{f_n}{x_1^{\alpha_{n,1}}\dots x_{n-1}^{\alpha_{n,n-1}}}\right)\mapsto\sum_{j=1}^n(-1)^{j+1}\frac{f_jx_j}{x_1^{\alpha_{j,1}}\dots x_j\dots x_n^{\alpha_{j,n}}}\in C^{n-1}\left(\mathcal{U},\mathcal{O}_{X_n}\right); \end{gather*} in other words: \begin{equation*} a,b\in\mathbb{R}[x_1,\dots,x_n]_{x_1\dots x_n},\,[a]=[b]\in\check{H}^{n-1}\left(\mathcal{U},\mathcal{O}_{X_n}\right)\iff a-b=\sum_{\underline{i}\in(\mathbb{N}_0)^n\setminus\{\underline{0}^n\}}\frac{r_{\underline{i}}}{x^{\underline{i}}} \end{equation*} where:

  1. $r_{\underline{i}}\in\mathbb{R}$,

  2. for any $\underline{i}=(i_1,\dots,i_n)\in(\mathbb{N}_0)^n,\,x^{\underline{i}}=x_1^{i_1}\dots x_n^{i_n}$;

then: \begin{equation*} \forall n\geq2,\,\check{H}^{n-1}\left(X_n,\mathcal{O}_{X_n}\right)=\bigoplus_{\underline{i}\in(\mathbb{N}_0)^n\setminus\{\underline{0}^n\}}x^{-\underline{i}}\mathbb{R}. \end{equation*}

Let $n>m\geq2$, then $X_n$ is not isomorphic to $X_m$ because, by the previous reasoning, $\check{H}^{n-1}\left(X_n,\mathcal{O}_{X_n}\right)\neq\check{H}^{n-1}\left(X_m,\mathcal{O}_{X_m}\right)=0$; in consequence $\mathbb{A}^m$ can not be isomorphic to $\mathbb{A}^n$.


Bibliography

[B] Bosch S. - Algebraic Geometry and Commutative Algebra (2013), Springer Verlag.

  • Thanks for the response. It may be awhile before I know enough algebraic geometry to really appreciate this answer. – D_S Jun 13 '16 at 19:34
  • For sake of simplicity; this proof is the algebraic geometric-theoretical version of the algebraic topological proof that $\mathbb{R}^n$ is homeomorphic to $\mathbb{R}^m$ (with the natural topologies) if and only if $m=n$ (a corollary of the Invariance of Domain's Theorem). – Armando j18eos Jun 14 '16 at 09:36
1

I leave my previous cohomolgical proof, and I post an elementary proof!, without Krull dimension theory. ;)


Considering the map \begin{equation*} n\geq2,\,\varphi_n:t\in\mathbb{A}^1_{\mathbb{K}}\to\left(t^n,t^{n+1},\dots,t^{2n-1}\right)\in\mathbb{A}^n_{\mathbb{K}}; \end{equation*} the image $\gamma_n$ of $\varphi_n$ is an algebebraic subset of $\mathbb{A}^n_{\mathbb{K}}$ given by the system of equations \begin{equation*} \begin{cases} x_1^{n+k-1}x_k-x_2^{n+k-1}=0\\ k\in\{1,\dots,n\}\setminus\{2\} \end{cases}; \end{equation*} because $\varphi_n$ is continuous and surjective onto the image, $\gamma_n$ is an irreducible set of (Krull) dimension $1$, that is, it is an irreducible algebraic curve.

By definition: \begin{equation*} \mathbb{K}[\gamma_n]=\mathbb{K}[x_1,\dots,x_n]_{\displaystyle/\left(x_1^{n+k-1}x_k-x_2^{n+k-1}\mid k\in\{1,\dots,n\}\setminus\{2\}\right)}, \end{equation*} let $\mathfrak{m}$ be the maximal ideal of $O=(0,\dots,0)$ in $\mathbb{K}[x_1,\dots,x_n]$ and let $\overline{\mathfrak{m}}$ be the maximal ideal of $O$ in $\mathbb{K}[\gamma_n]$; let $\pi:\mathbb{K}[x_1\dots,x_n]\to\mathbb{K}[\gamma_n]$ the canonical projection, passing to the localization at $\overline{\mathfrak{m}}$, $\varpi=\pi_{\overline{\mathfrak{m}}}$ (the localization of $\pi$ at $\overline{\mathfrak{m}}$) is a surjective morphism of local rings, in other words $\varpi(\mathfrak{m})=\overline{\mathfrak{m}}$!

Easily, one has that \begin{equation*} \forall k\in\{1,\dots,n\},\,\overline{x_k}\notin\left(\overline{x_1},\dots,\overline{x_{k-1}},\overline{x_{k+1}},\dots,\overline{x_n}\right) \end{equation*} therefore: $\overline{\mathfrak{m}}$ has $n$ generators, $\mathbb{K}[\gamma_n]_{\overline{\mathfrak{m}}}$ is not a regular ring and $O$ is not a regular point of $\gamma_n$!

By definition, the Zariski cotangent space of $\gamma_n$ at $O$ is the $\mathbb{K}$-vector space \begin{equation*} \left(T_O\gamma_n\right)^{\vee}=\overline{\mathfrak{m}}_{\displaystyle/\overline{\mathfrak{m}}^2}=\left\{\left[a_1\overline{x_1}+\dots+a_n\overline{x_n}\right]\subset\mathbb{K}[\gamma_n]\mid a_1,\dots,a_n\in\mathbb{K}\right\}\cong\mathbb{K}^n; \end{equation*} in a similar way, one proves that $\left(T_O\mathbb{A}^n_{\mathbb{K}}\right)^{\vee}\cong\mathbb{K}^n$.

In this way, let $i$ be the inclusion of $\gamma_n$ in $\mathbb{A}^n_{\mathbb{K}}$, one can consider the $\mathbb{K}$-linear surjective morphism: \begin{equation*} \left(d_Oi\right)^{\vee}:[a]\in\left(T_{i(O)}\mathbb{A}^n_{\mathbb{K}}\right)^{\vee}\cong\mathbb{K}^n\to[\varpi(a)]\in\left(T_O\gamma_n\right)^{\vee}\cong\mathbb{K}^n. \end{equation*} If $1\leq m<n$ and $\mathbb{A}^m_{\mathbb{K}}$ is regular isomorphic to $\mathbb{A}^n_{\mathbb{K}}$, then $\gamma_n$, up to regular isomorphisms, is an irreducible, singular curve of $\mathbb{A}^m_{\mathbb{K}}$; let $j$ be the inclusion of $\gamma_n$ in $\mathbb{A}^m_{\mathbb{K}}$, by the same reasoning, $\left(d_Oj\right)^{\vee}$ induces a $\mathbb{K}$-linear surjective morphism from $\mathbb{K}^m$ onto $\mathbb{K}^n$: this is a contraddition! Q.E.D. $\Box$