This question follows from another one Topology proof: dense sets and no trivial intersection
Show that given a topological space $(X, \mathcal{T}), D \subseteq X$
Then $D$ is dense iff $\forall U \in \mathcal{T}, U \neq \varnothing, D \cap U \neq \varnothing$
Here my try:
$(\Rightarrow)$ $D$ is dense if $\overline D = X$. By definition, $\overline{D} = \{x \in X| \forall U \in \mathcal{T}, x \in U \implies U \cap D \neq \varnothing\}$ so $\overline{\overline D} = \{x \in X| \forall U \in \mathcal{T}, x \in U \implies U \cap \overline D \neq \varnothing\}$
Since $\overline D = X$, and $U \subseteq X$, therefore $\forall x \in X, \forall U \in \mathcal{T}, x \in U \implies U \cap \overline D \neq \varnothing$
But $\overline D = \overline{\overline D}$, therefore $\forall x \in X, \forall U \in \mathcal{T}, x \in U \implies U \cap D \neq \varnothing \Leftrightarrow \forall U \in \mathcal{T}, U \neq \varnothing, D \cap U \neq \varnothing$
($\Leftarrow$) Given $D \subseteq X$, $\forall U \in \mathcal{T}, U \subseteq X, D \cap U \neq \varnothing$, we want to show that $\overline D = X$. I think this proof is immediate but am I not sure how to show this...
Can someone check my attempt and show me how to continue with $\Leftarrow$