0

Possible Duplicate:
Evaluating this integral for different values of a constant

Is there a solution to the definite integral, $$\int\limits_{0}^{\infty} \frac{1}{x^{\frac{1}{n}}}\frac{1}{1+x^2}\mathrm{d}x$$ where, $n \in \mathbb{N}$

HINT : substitute, $x = \tan\theta$

HOLYBIBLETHE
  • 2,770
  • 1
    Are you giving us a hint ? – Belgi Aug 11 '12 at 07:12
  • I wonder if there's something special about $n\in\Bbb N$ and $x=\tan\theta$ that makes this question seek a different type of answer than the one given in the duplicate question. – anon Aug 11 '12 at 07:25

1 Answers1

1

Maple says that $$\int\limits_0^{\infty}x^{-1/n}\dfrac 1{x^2+1}dx=\dfrac 12\pi\sec\left(\dfrac{\pi}{2n}\right)$$