1

If elements $a$ and $b$ of a group are of finite order, what can we say about the order of $ab$?

M. Vinay
  • 9,004
Non-Being
  • 584
  • 7
  • 16

1 Answers1

1

If $a$ and $b$ commutes, i.e. $ab=ba$

If $a^n=b^m=e$, then $(ab)^{\gcd{m,n}}=a^{\gcd(m,n)}b^{\gcd(m,n)}=e$.

Counterexample for the noncommutative case

Let $G$ be the group of rank $2$ with the additional relations $a^2=b^2=1$. Then, $(ab)^n=abababab\ldots ab$ is a different non-zero element for every $n$, thus, the order of $ab$ is infinite.

Emre
  • 3,962