1

If $A.M$ and $G.M$ are Arithmetic Mean And Geometric Mean respectively then prove that $A.M \ge G.M$.

My Attempt :

Let $a$ and $b$ are any two real positive numbers. Then:
$$A.M=\frac{a+b}{2}$$

$$G.M =\sqrt{ab} $$

Now how can we show that $A.M.\ge G.M.$ ? Please help me..

Harsh Kumar
  • 2,846

3 Answers3

2

$$0\leq\left(\sqrt{a}-\sqrt{b}\right)^{2}=a+b-2\sqrt{ab}.$$

Marco Cantarini
  • 33,062
  • 2
  • 47
  • 93
2

enter image description here

Let $AF=a, FB=b$. We construct the semicircle with diameter $AB$. Then $$DE=\frac{a+b}2; CF=\sqrt{ab}$$ $$DE\ge CF \Rightarrow \frac{a+b}2\ge\sqrt{ab}$$

Roman83
  • 17,884
  • 3
  • 26
  • 70
0

Extending Marco Cantarini's answer $$0\leq\left(\sqrt{a}-\sqrt{b}\right)^{2} =a+b-2\sqrt{ab} => 0\leq a+b-2\sqrt{ab} => 2\sqrt{ab}\leq a+b => \sqrt{ab}\leq\frac{a+b}{2} => G.M.\leq A.M.$$

Shona
  • 489