Hint $\ $ The set $\,\cal O\,$ of integers $\rm\:n >0\:$ such that $\rm\:r^n \equiv 1\:$ is closed under positive subtraction, i.e.
$$\rm \color{#C00}n>\color{#0A0}m\,\in\,{\cal O}\ \Rightarrow\ 1\equiv \color{#C00}{r^n} \equiv r^{n-m}\, \color{#0A0}{r^m} \equiv r^{n-m}\, \Rightarrow\ n\!-\!m\,\in\,{\cal O}$$
So, by the Theorem below, every element of $\rm\,\cal O\,$ is divisible by its least element $\rm\:\ell\ \! $ := order of $\rm\,r.$ Therefore $\,\ell\,$ divides the prime $\rm\,q\in\cal O,\:$ thus $\,\ell = 1\,$ or $\rm\,\ell = q.\:$ But if $\ \ell = 1\,$ then $\rm\,r^1\equiv 1\,$ contra hypothesis. Thus $\rm\ \ell = q.\:$ By little Fermat $\rm\,p\!-\!1\in \cal O,\:$ hence $\rm\,q\,$ divides $\rm\,p\!-\!1\,$ by the Theorem.
Theorem $\ \ $ If a nonempty set of positive integers $\rm\,\cal O\,$ satisfies $\rm\ n > m\, \in\, {\cal O} \ \Rightarrow\ n\!-\!m\, \in\, \cal O$
then every element of $\rm\,\cal O\,$ is a multiple of the least element $\rm\:\ell \in\cal O.$
Proof $\ $ If not there's a least nonmultiple $\rm\:n\in \cal O,\:$ contra $\rm\:n\!-\!\ell \in \cal O\:$ is a nonmultiple of $\rm\:\ell. \ $ QED
For more on the key innate structure see this post on order ideals and denominator ideals.