Let's try splitting up the series (since if it converges to a finite number, it will be absolutely convergent, since all terms are positive).
$$\sum_{k=1}^{\infty} \frac{1}{(k+1)(k-1)!}(1 - \frac{2}{k}) = \sum_{k=1}^{\infty} \frac{1}{(k+1)(k-1)!} - 2 \sum_{k=1}^{\infty} \frac{1}{(k+1)(k)(k-1)!} \\ = \sum_{k=1}^{\infty} \frac{k}{(k+1)(k)(k-1)!} - 2 \sum_{k=1}^{\infty} \frac{1}{(k+1)!} \\ = \sum_{k=1}^{\infty} \frac{k}{(k+1)!} - 2 \left[\sum_{k=0}^{\infty} \frac{1}{(k+2)!} + \frac{1}{0!} + \frac{1}{1!} -2 \right] = \\ \sum_{k=0}^{\infty} \frac{k+1}{(k+2)!} -2\left[ \sum_{k=0}^{\infty}\frac{1^k}{k!} -2 \right] = \sum_{k=0}^{\infty}\frac{k}{(k+2)!} + \sum_{k=0}^{\infty} \frac{1}{(k+2)!} - 2[e^1 -2]$$
Using the same technique as before:
$$ = \sum_{k=0}^{\infty}\frac{k}{(k+2)!} + [e^1 -2] - 2[e^1 -2] \\= \sum_{k=1}^{\infty} \frac{ k }{(k+2)!} -[e^1 -2] \\ = \sum_{k=1}^{\infty} \frac{ k }{(k+2)!} + \sum_{k=0}^{\infty} \frac{2}{(k+2)!} - \sum_{k=0}^{\infty} \frac{2}{(k+2)!} -[e^1 -2] \\ = \sum_{k=0}^{\infty} \frac{k+2}{(k+2)!} - 2 \sum_{k=0}^{\infty} \frac{1}{(k+2)!} - [e^1 -2]$$
Using a second time our computation that $\sum_{k=0}^{\infty} \frac{1}{(k+2)!} = e^1 -2$ we get $$= \sum_{k=0}^{\infty} \frac{k+2}{(k+2)!} - 3[e^1 -2] \\ = \sum_{k=0}^{\infty} \frac{1}{(k+1)!} - 3[e^1 -2] \\ = \sum_{k=0}^{\infty}\frac{1}{(k+1)!} + 1 -1 -3[e^1-2] \\ = \sum_{k=0}^{\infty} \frac{1}{k!} -1 - 3[e -2] \\ = e-1 -3e +6 \\ \\= -2e+5 $$