$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\sum_{k = 1}^{n}{1 \over n + k} & = \sum_{k = n + 1}^{2n}{1 \over k} =
\sum_{k = 1}^{2n}{1 \over k} - \sum_{k = 1}^{n}{1 \over k} = H_{2n} - H_{n}\,,
\qquad\pars{~H_{z}: Harmonic\ Number~}
\end{align}
Since
$\ds{\pars{~\gamma:\ Euler\!-\!Mascheroni\ Constant~}}$
$$
\ln\pars{m + {1 \over 2}} + \gamma + {1 \over 24\pars{m + 1}^{2}} < H_{m} <
\ln\pars{m + {1 \over 2}} + \gamma + {1 \over 24m^{2}}
$$
\begin{align}
&\mbox{I'll have}\quad\left\{\begin{array}{rcl}
\ds{H_{2n}} & \ds{<} & \ds{\ln\pars{2n + {1 \over 2}} + \gamma + {1 \over 96n^{2}}}
\\[2mm]
\ds{-H_{n}} & \ds{<} &
\ds{-\ln\pars{n + {1 \over 2}} - \gamma - {1 \over 24\pars{n + 1}^{2}}}
\end{array}\right.
\\[5mm] & \implies
\bbx{\left.\sum_{k = 1}^{n}{1 \over n + k}\right\vert_{\ n\ \geq\ 1} < \ln\pars{2 - {1 \over 2n + 1}} -
{\pars{n + 1/3}\pars{n - 1} \over 32n^{2}\pars{n + 1}^{2}} <\
\ln\pars{2} < \color{#f00}{{\root{2} \over 2}}}
\end{align}
Indeed, $\ds{\ln\pars{2} \approx 0.6931}$ is a "better bound" that $\ds{{\root{2} \over 2} \approx 0.7071}$ !!!.