Let IG denote Inverse-Gamma distribution Inverse-Gamma. If $X\sim IG(\alpha,1)$ and $Y\sim IG(\beta,1)$. Show that $\frac{X}{X+Y}\sim Beta(\alpha,\beta)$
I tried with jacobian transformation taking $Z=\frac{X}{X+Y}$ and $W=Y$ then \begin{align}X&=\frac{WZ}{1-Z};\quad Y=W \\[0.2cm]\frac{\partial(z,w)}{\partial(x,y)}&=\frac{1}{(1-z)^2}\\[0.3cm]f_{Z,W}(z,w)&=f_X\left(\frac{wz}{1-z}\right)f_Y(w)(1-z)^2\\[0.3cm]f_{Z,W}(z,w)&=\frac{1}{\Gamma{(\alpha)}}\left(\frac{wz}{1-z}\right)^{-\alpha-1}e^{-\frac{(1-z)}{wz}}\frac{1}{\Gamma{(\beta)}}w^{-\beta-1}e^{-\frac{1}{w}}(1-z)^2\end{align}
but I'm stuck, in some place I read that $\frac{X}{X+Y}$ is a type 3 Beta distribution, but I can't show that.