In order to put @joriki's answer in a more "compact" and generalized way,
let's put
$$
\begin{gathered}
N_{\,b} (s,\;r,\;m)\quad \left| {\;0 \leqslant \text{integers }s,m,r} \right.\quad = \hfill \\
= \text{No}\text{.}\;\text{of}\;\text{solutions}\;\text{to}\;\left\{ \begin{gathered}
0 \leqslant \text{integer}\;x_{\,j} \leqslant r \hfill \\
x_{\,1} + x_{\,2} + \; \cdots \; + x_{\,m} = s \hfill \\
\end{gathered} \right. = \hfill \\
= \sum\limits_{\left( {0\, \leqslant } \right)\,j\,\left( { \leqslant \,m} \right)} {\left( { - 1} \right)^j \left( \begin{gathered}
m \hfill \\
j \hfill \\
\end{gathered} \right)\left( \begin{gathered}
s + m - 1 - j\left( {r + 1} \right) \\
s - j\left( {r + 1} \right) \\
\end{gathered} \right)} \hfill \\
\end{gathered}
$$
i.e., with the formula presented by @joriki but with the second binomial written in the symmetrical way, so that everything
is according to the binomial defined as:
$$
\left( \begin{gathered}
x \\
q \\
\end{gathered} \right) = \left\{ \begin{gathered}
\frac{{x^{\,\underline {\,q\,} } }}
{{q!}}\;\;0 \leqslant \text{integer}\;q \hfill \\
0\quad \;\;\text{otherwise}\, \hfill \\
\end{gathered} \right.\;\;
$$
Refer to Problem of rolling dice for further considerations.
Note that we have better and consider dice numbered $0$ to $r$, because that simplifies dealing with the above formula and its paramters ranges.
So, in the general case 2) you proposed we have:
$m=Y=$ number of dices, $r=F-1$ because of considering the facets numbered $0$ to $r$, $s=X-m$ deducting $1$ from the value of each face.
Then:
$$
\begin{gathered}
M_{\,b} (s,\;r,\;m)\quad \left| {\;0 \leqslant \text{integers }s,m,r} \right.\quad = \hfill \\
= \sum\limits_{0\, \leqslant \,i\, \leqslant \,s} {N_{\,b} (i,\;r,\;m)} = \hfill \\
= \sum\limits_{0\, \leqslant \,i\, \leqslant \,s} {\;\sum\limits_{\left( {0\, \leqslant } \right)\,j\,\left( { \leqslant \,m} \right)} {\left( { - 1} \right)^j \left( \begin{gathered}
m \hfill \\
j \hfill \\
\end{gathered} \right)\left( \begin{gathered}
i + m - 1 - j\left( {r + 1} \right) \\
i - j\left( {r + 1} \right) \\
\end{gathered} \right)} } = \hfill \\
= \sum\limits_j {\left( { - 1} \right)^j \left( \begin{gathered}
m \hfill \\
j \hfill \\
\end{gathered} \right)\left( \begin{gathered}
s + m - j\left( {r + 1} \right) \\
s - j\left( {r + 1} \right) \\
\end{gathered} \right)} \hfill \\
\end{gathered}
$$
(note that $N_{\,b}$ and $M_{\,b}$ differ by just a $1$ in the upper term of $2$nd bin.c.)
and
$$
N_{\,b} (mr < s,\;r,\;m) = 0\quad ,\quad M_{\,b} (mr \leqslant s,\;r,\;m) = \left( {r + 1} \right)^{\,m}
$$
From that, the number of ways of obtaining a sum >= $s$, will be of course:
$$
\sum\limits_{s\, \leqslant \,i\,\left( { \leqslant \,mr} \right)} {N_{\,b} (i,\;r,\;m)} = \left( {r + 1} \right)^{\,m} - \sum\limits_{0\, \leqslant \,i\, \leqslant \,s - 1} {N_{\,b} (i,\;r,\;m)} = \left( {r + 1} \right)^{\,m} - M_{\,b} (s - 1,\;r,\;m)
$$