Integration by parts gives:
$$ \int_{0}^{1}\frac{\log(t^2+(t-1)^2)}{t}\,dt = \int_{0}^{1}\frac{2t+2(t-1)}{t^2+(t+1)^2}\,\log(t)\,dt\\=-\int_{0}^{1}\left(\frac{1}{t-\frac{1+i}{2}}+\frac{1}{t-\frac{1-i}{2}}\right)\log(t)\,dt\tag{1}$$
but:
$$ \int_{0}^{1}\frac{\log(t)}{t-a}\,dt = \text{Li}_2\left(\frac{1}{a}\right) \tag{2}$$
hence the previous integral is given by $-2\cdot\text{Re}\left[\text{Li}_2(1-i)\right]$, but that can be computed from the reflection formula for $\text{Li}_2$:
$$ \text{Li}_2(z)+\text{Li}_2(1-z)=\frac{\pi^2}{6}-\log(z)\log(1-z).\tag{3}$$
We may also notice that through the substitution $u=2t-1$ the last integral in $(1)$ becomes:
$$ I=-\int_{-1}^{1}\frac{2u}{u^2+1}\log\left(\frac{1+u}{2}\right)\,du=-\int_{-1}^{1}\frac{2u}{u^2+1}\log\left(1+u\right)\,du\\=-\int_{-1}^{1}\frac{u}{u^2+1}\log\left(\frac{1+u}{1-u}\right)\,du\tag{4}$$
since the integral of an odd, integrable function over a symmetric interval is zero.
But putting $u=\tanh z$, then $z=-\log v$, we are left with:
$$ I = -4\int_{0}^{+\infty}\frac{z\sinh(z)}{\cosh(z)\cosh(2z)}\,dz = 4 \int_{0}^{1}\frac{2v(1-v^2)}{(1+v^2)(1+v^4)}\log(v)\,dv\tag{5}$$
that is:
$$ I = 4\int_{0}^{1}\left(\frac{2v}{1+v^2}-\frac{2v^3}{1+v^4}\right)\log(v)\,dv = 3 \int_{0}^{1}\frac{2v}{1+v^2}\log(v)\,dv\tag{6}$$
and by expanding $\frac{2v}{1+v^2}$ as a Taylor series:
$$ I = 3 \sum_{n\geq 0}\left(-\frac{1}{2(n+1)^2}\right) = \frac{3}{2}\sum_{n\geq 1}\frac{(-1)^n}{n^2}=\color{red}{-\frac{\pi^2}{8}}\tag{7}$$
as wanted, avoiding the $\text{Li}_2$ reflection formula (but, in facts, proving it).
It is interesting to remark that the last approach gives nice rational approximations of $\pi^2$.
For instance, in the same spirit we have:
$$ \int_{0}^{1}\left(\frac{v}{1+v^2}+\frac{v^3}{1+v^4}-\frac{v^5}{1+v^6}+\frac{2v^7}{1+v^8}\right)\log(v)\,dv = -\frac{91}{3456}\,\pi^2 $$
where the function between parenthesis is chosen to be $v+v^9+o(v^9)$ in a right neighbourhood of the origin, so that the value of the integral is expected to be close to
$$\int_{0}^{1}(v+v^9)\log v\,dv = -\frac{13}{50}$$
and
$$ \pi^2\approx\frac{12^3}{7\cdot 5^2} $$
follows.