All numbers here are integers. If $gcd(a,b)=1$ then if $(x_0,y_0)\neq(x_1,y_1)$ with $0<x_i<b$ and $0<y_i<a$ we have $ax_0+by_0\neq ax_1+by_1$.
Similarly is it true $(x_0,y_0,z_0)\neq(x_1,y_1,z_1)$ with $0<x_i<b$, $0<y_i<\min(a,b)$ and $0<z_i<a$ we will have $a^2x_0+aby_0+b^2z_0\neq a^2x_1+aby_1+b^2z_1$?