I don't know how to prove that $\forall x\in \mathbb{R^+} \displaystyle \lim_{n\to \infty}n(\sqrt[n]{x}-1)=\ln(x)$
with elementary techniques
I don't know how to prove that $\forall x\in \mathbb{R^+} \displaystyle \lim_{n\to \infty}n(\sqrt[n]{x}-1)=\ln(x)$
with elementary techniques
Write $$ n(\sqrt[n]{x}-1)=\frac{e^{\frac{1}{n}\ln x}-1}{\frac{1}{n}} $$ and use the notable limit $$ \lim_{t\to 0}\frac{e^t-1}{t}=1\quad (\textrm{which implies }\lim_{t\to 0}\frac{e^{at}-1}{t}=a). $$
I thought it would be instructive to see a way forward that forgoes use of calculus. To that end, we proceed.
In THIS ANSWER, I showed using only the limit definition of the exponential function and Bernoulli's Inequality that the exponential function satisfies the inequalities
$$\bbox[5px,border:2px solid #C0A000]{1+x\le e^x\le \frac{1}{1-x}}\tag 1$$
for $x<1$. Then, using $(1)$ along with the identity $\sqrt[n]{x}=e^{\frac1n \log(x)}$, we have
$$\log(x) \le n\left(e^{\frac1n \log(x)}-1\right)\le \frac{\log(x)}{1-\frac1n \log(x)} \tag 2$$
Applying the squeeze theorem to $(2)$ yields the coveted limit
$$\bbox[5px,border:2px solid #C0A000]{\lim_{n\to \infty}n\left(\sqrt[n]{x}-1\right)=\log(x)}$$