Evaluate the integral $$I=\int_0^{\infty}\frac{\log x}{x^2-1}dx$$
Attempt: $$I=-\int_{0}^{\infty}\log(x)\sum_{k=0}^{\infty}x^{2k}dx=-\sum_{k=0}^{\infty}\lim_{n\to\infty}I_n$$ where $I_n=\int_{0}^nx^{2k}\log(x)dx$.
For computing $I_n$, let $u=\log(x)$ and $dv=x^{2k}dx$. Then $du=(1/x)dx$ and $v=x^{2k+1}/(2k+1)^2$. So, \begin{equation} I_n=\frac{x^{2k+1}}{2k+1}log(x)-\frac{x^{2k+1}}{(2k+1)^2}\Bigg|_{x=0}^{x=n}=\frac{n^{2k+1}}{2k+1}log(n)-\frac{n^{2k+1}}{(2k+1)^2}-\lim_{x\to 0^{+}}\Big(\frac{x^{2k+1} }{2k+1}\log(x)\Big)\end{equation} On the other hand, $$\lim_{x\to 0^+}x^{2k+1}log(x)=\lim_{x\to 0^+}\frac{1/x}{1/x^{2k+1}}=\lim_{x\to 0^+}\frac{x^{2k+1}}{-2k-1}=0$$ So we have $$I_n=\frac{n^{2k+1}}{2k+1}\log(n)-\frac{n^{2k+1}}{(2k+1)^2}$$ Now we need to compute $\lim_{n\to\infty}I_n$. But I'm stuck here. How can we compute this limit? And can anyone check my attempt? Thanks!