Let $A$ be a $3 \times 2$ matrix, and $B$ be a $2\times 3$ matrix. If $(AB)^2 = 0$, then how can I show that $(BA)^2 = 0$?
I have done some calculation but it's too much. I was wondering if there is a better way:
$ A = \begin{bmatrix} a_{11} & a_{12} \\[0.3em] a_{21} & a_{22} \\[0.3em] a_{31} & a_{32} \end{bmatrix} , B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\[0.3em] b_{21} & b_{22} & b_{32} \end{bmatrix} $
then we have:
$ AB = \begin{bmatrix} a_{11}b_{11}+a_{12}b_{21} & a_{11}b_{12}+a_{12}b_{22} & a_{11}b_{13}+a_{12}b_{23} \\[0.3em] a_{21}b_{11}+a_{22}b_{21} & a_{21}b_{12}+a_{22}b_{22} & a_{21}b_{13}+a_{22}b_{32} \\[0.3em] a_{31}b_{11}+a_{32}b_{21} & a_{31}b_{12}+a_{32}b_{22} & a_{31}b_{13}+a_{32}b_{23} \end{bmatrix} $
$ BA = \begin{bmatrix} b_{11}a_{11}+b_{12}a_{21}+b_{13}a_{31} & b_{11}a_{12}+b_{12}a_{22}+b_{13}a_{32} \\[0.3em] b_{21}a_{11}+b_{22}a_{21}+b_{23}a_{31} & b_{21}a_{12}+b_{22}a_{22}+b_{23}a_{32} \end{bmatrix} $
The elements of AB and BA are some how similar, maybe by calculation I get to something. But I really hope there is a better way.