Show that the permutations:
$\alpha= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 3 & 6 & 1 & 4 \\ \end{pmatrix} $ and $\beta= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 4 & 2 & 1 & 6 \\ \end{pmatrix} $
Are conjugated in $S_6$ and you hrite all permutations $\gamma\in S_6$ such that $\gamma\alpha\gamma^{-1}=\beta$
I know that $\alpha=(1,2,5)(4,6)(3)$ and $\beta=(2,3,4)(1,5)(6)$ also if $\sigma_1=\bigl( \begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & 5 & 4 & 6 \end{smallmatrix} \bigr)$ then $\sigma_1(1,2,5)\sigma_1^{-1}=(2,3,4)$; if $\sigma_2=\bigl( \begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 1 & 6 & 5 \end{smallmatrix} \bigr)$ then $\sigma_2(4,6)\sigma_2^{-1}=(1,5)$ and if $\sigma_3=(3,6)$ then $\sigma_3(3)\sigma_3^{-1}=(6)$.
But I don't know how to build $\gamma$ such that $\gamma\alpha\gamma^{-1}=\beta$. Can you help me, please?