I have tried to solve $\lim_{x\rightarrow \infty ,y\rightarrow\infty}f(x,y)$, where $f(x,y) = \frac{2x + 3y}{x^2+xy+y^2}$.
Can I define $y = r \sin \theta$ and $x=r\cos \theta$ when $x\rightarrow \infty ,y\rightarrow\infty$ ? Thanks.
I have tried to solve $\lim_{x\rightarrow \infty ,y\rightarrow\infty}f(x,y)$, where $f(x,y) = \frac{2x + 3y}{x^2+xy+y^2}$.
Can I define $y = r \sin \theta$ and $x=r\cos \theta$ when $x\rightarrow \infty ,y\rightarrow\infty$ ? Thanks.
Write $x=r\cos t, y = r\sin t.$ The expression equals
$$\frac{r(2\cos t+ 3\sin t)}{r^2(\cos^2 t + \cos t\sin t + \sin^2 t)} = \frac{1}{r}\frac{2\cos t+ 3\sin t}{1 + (\sin 2t)/2}.$$
In absolute value the last expression is bounded above by $(1/r)[5/(1/2)] = 10/r.$ This $\to 0$ as $r\to \infty.$
It must be zero because of the greater order of the denominator (the denominator grows faster then the numerator).
Also you can put $$\frac{2x + 3y}{x^2+xy+y^2}=\frac{1}{x}\cdot \frac{2+3\frac yx}{1+\frac yx+(\frac yx)^2}$$ and only if the second factor is of the form $\frac{\infty}{\infty}$ you cannot to be sure that the limit is zero. But in this case $$\lim_{x,y\to \infty} \frac yx=\infty\iff \lim_{x,y\to \infty} \frac xy=0 $$ and you can do the following:
$$\frac{2x + 3y}{x^2+xy+y^2}=\frac{2x + 3y}{(2x+3y)^2-(3x^2+5xy+8y^3)}=\frac {4}{(2x+3y)(4-6x-y)+\frac{29y^2}{2x+3y}}$$ You have $$\frac{29y^2}{2x+3y}=\frac{29}{\frac 1y(2\cdot \frac xy+\frac 3y)}$$ which tends to $\infty$ because $\frac xy$ tend to $0$. It follows that the asked limit is equal to $0$