So $\alpha = \sqrt{2+\sqrt{2}}$, and I've already found the minimal polynomial of $\alpha$ over $\mathbb{Q}$ to be $p=x^4 - 4x^2 + 2$ and shown that $\mathbb{Q}(\alpha)$ is a normal extension. Now I want to describe the Galois group. We know $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 4$, so the Galois group has $4$ elements. The basis of the extension is $\{1, \alpha, \alpha^2, \alpha^3\}$, so the automorphism of $\mathbb{Q}(\alpha)$ leaving $\mathbb{Q}$ fixed need to act on $\sqrt{2}$ and $\sqrt{2+\sqrt{2}}$, I think. These would be: \begin{align*} \sigma_1 &: \sqrt{2}\rightarrow\sqrt{2}, \: \sqrt{2+\sqrt{2}} \rightarrow \sqrt{2+\sqrt{2}} \\ \sigma_2 &: \sqrt{2}\rightarrow -\sqrt{2}, \: \sqrt{2+\sqrt{2}} \rightarrow \sqrt{2+\sqrt{2}} \\ \sigma_3 &: \sqrt{2}\rightarrow\sqrt{2}, \: \sqrt{2+\sqrt{2}} \rightarrow -\sqrt{2+\sqrt{2}} \\ \sigma_4 &: \sqrt{2}\rightarrow -\sqrt{2}, \: \sqrt{2+\sqrt{2}} \rightarrow -\sqrt{2+\sqrt{2}} \end{align*}
Since all of these automorphisms are of order $2$, the Galois group of the extension is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$
Is it correct? Could the argument be simpler?