The first one can be solved using the fact that the generating
function of the Fibonacci numbers is
$$\frac{z}{1-z-z^2}.$$
Introduce the function
$$f(z) = \sum_{n\ge 0} z^n \sum_{k=0}^n \frac{F_{2k} F_{n-k}}{10^n}$$
so that we are interested in $f(1).$
Re-write $f(z)$ as follows:
$$f(z) = \sum_{k\ge 0} F_{2k}
\sum_{n\ge k} \frac{z^n}{10^n} F_{n-k}
= \sum_{k\ge 0} F_{2k} \frac{z^k}{10^k}
\sum_{n\ge 0} \frac{z^n}{10^n} F_n.$$
Now we have
$$ \sum_{k\ge 0} F_{2k} z^{2k} =
\frac{1}{2} \frac{z}{1-z-z^2}
- \frac{1}{2} \frac{z}{1+z-z^2}$$
and therefore $f(1)$ is
$$\left(\frac{1}{2} \frac{1/\sqrt{10}}{1-1/\sqrt{10}-1/10}
- \frac{1}{2} \frac{1/\sqrt{10}}{1+1/\sqrt{10}-1/10}\right)
\times
\frac{1/10}{1-1/10-1/100}$$
which simplifies to
$$\frac{1}{2\sqrt{10}}
\frac{2/\sqrt{10}}{81/100-1/10} \times \frac{10}{89}
= \frac{1}{10} \times \frac{1}{71/100} \times \frac{10}{89} =
\frac{100}{89\times 71}.$$