Provide a solution for the following sum:
(c) $$\sum\limits_{i=0}^n \binom{2n}{2i} $$ Hint: use this identity:
(b) $$ \binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$$
Could you help me with this problem?
This is what I have tried:
$$\sum\limits_{i=0}^n \binom{2n}{2i} = \binom{2n-1}{2i-1} + \binom{2n-1}{2i} \\ = \frac{(2n-1)!}{(2i-1)! [(2n-1)-(2i-1)]!} + \frac{(2n-1)!}{(2i)![(2n-1)-2i]!} \\ = \frac{(2n-1)!}{(2i-1)! (2n-2i)!} + \frac{(2n-1)!}{(2i)!(2n-2i-1)!} \\ = \frac{2i(2n-1)! + (2n-1)!(2n-2i)}{(2i)!(2n-2i)!} \\ = \frac{(2n-1)!(2n)}{(2i)(2n-2i)!}$$