Thanks to Derek Holt and SpamIAM for the recomendations and useful links, after a while to read and understand Modules over a PID, I finally got an answer.
Let $\phi$ be a $\mathbb{Z}$-linear map such that can be determined by $\phi(e_{1}) = f_{1}, \dots, \phi(e_{n}) = f_{n}$, where $e_{1}, \dots, e_{n}$ be the basis of $\mathbb{Z}^{n}$. Then $\phi(e_{j}) = \sum_{i=1}^{n} = c_{ij}e_{i}$ for $j = 1, \dots, n$, so $(c_{ij})$ is the matrix representation of $\phi$ with respect to the basis. Then
$$
\phi(\mathbb{Z}^{n}) = \mathbb{Z}\phi(e_{1}) \oplus \dots \oplus \mathbb{Z}\phi(e_{n}) = \mathbb{Z}f_{1} \oplus \dots \oplus \mathbb{Z}f_{n},
$$
By aligned bases for $\mathbb{Z}^{n}$ and its modulo $\phi(\mathbb{Z}^{n})$, we can say that
$$
\mathbb{Z}^{n} = \mathbb{Z}v_{1} \oplus \dots \oplus \mathbb{Z}v_{n}, \hspace{1 em} \phi(\mathbb{Z}^{n}) = \mathbb{Z}a_{1}v_{1} \oplus \dots \oplus \mathbb{Z}a_{n}v_{n}
$$
where $a_{i}$'s are nonzero integers. Then
$$
\mathbb{Z}^{n}/\phi(\mathbb{Z}^{n}) \cong \bigoplus_{i=1}^{b} \mathbb{Z}/a_{i}\mathbb{Z}
$$
Now, for our solution we need to get the Smith Normal Form, since each $a_{i}$ is the $M_{i,i}$ element of the matrix, the Smith Normal Form of the cokernel is:
$$
\left(\begin{matrix}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 18
\end{matrix}\right)
$$
So, we can describe the cokernel as the sum of cyclic groups:
$$
\mathbb{Z}^{3}/\phi(\mathbb{Z}^{3}) \cong \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/18\mathbb{Z}
$$