The source of idea is from here
Where $$\psi(q)=\sum_{k=0}^{\infty}q^{\frac{k(k+1)}{2}}$$
Prove that,
(1)
$$\prod_{k=1}^{\infty}\left(1-e^{-\pi{k\sqrt n}}\right)=\frac{\sqrt2 g_n^2\psi(e^{-\pi\sqrt n})}{e^{\frac{\pi\sqrt n}{12}}}$$
On my recent post here Paramananad Singh showed that our question is a simple case of Ramanujan $G_n$ and $g_n$ Function. We found another similiar Ramanujan-type infinite product and ask if anyone can help us to prove (1).
We are going to verify (1) numerically
We used the values $g_n$ from here
$g_{10}=\sqrt{\frac{1+\sqrt5}{2}}$
$$\prod_{k=1}^{\infty}\left(1-e^{-\pi{k\sqrt{10}}}\right)=\frac{\phi\sqrt2 \psi(e^{-\pi\sqrt{10}})}{e^{\frac{\pi\sqrt{10}}{12}}}=0.9999515288...$$