I want to prove that there exists an inclusion $\mathbb{F}_{p^a} \hookrightarrow \mathbb{F}_{p^b}$ iff $a \vert b$.
Suppose that $a \vert b$, then $b =ac$ for some $c \in \mathbb{Z}$. Consider then that $p^b = p^{ac} = (p^{a})^c \implies p^a \subset p^b$. Therefore we can define an inclusion $\mathbb{F}_{p^a} \hookrightarrow \mathbb{F}_{p^b}$.
Conversely, suppose there exists an inclusion $\mathbb{F}_{p^a} \hookrightarrow \mathbb{F}_{p^b}$ and $a \ \not \vert b$. Then $b \neq ac \implies p^b \neq p^{ac} = (p^a)^c \implies p^a \not \subset p^b$ and therefore no inclusion can be defined from $\mathbb{F}_{p^a} \hookrightarrow \mathbb{F}_{p^b}$. This contradiction yields the necessary result.
Note that $p$ represents a prime.
Is this legitimate?