You need a small variation of your idea. First, we may assume without loss of generality that $\|T_1\|\leq1$, $\|T_2\|\leq1$. Now you take $n_0$ such that $\|T_1^{n}\| \leq (r(T_1)+\epsilon )^{n}$ and $\|T_2^n\|\leq(r(T_2)+\epsilon)^n$ for all $n\geq n_0$. Also, since $\|T_1^k\|^{1/k}\to r(T_1)$ and $\|T_2^k\|^{1/k}\to r(T_2)$, there exist $c_1,c_2>0$ with
$$
\|T_1^k\|^{1/k}\leq c_1,\ \ \ \ \|T_2^k\|^{1/k}\leq c_2\ \ \ \text{ for all } k.
$$
Now, for $n\geq 2n_0$, let $d_j=r(T_j)+\epsilon$ and $$R=1+\max\left\{ \left(\frac{c_1}{d_1}\right)^k+\left(\frac{c_2}{d_2}\right)^{n-k}:\ k=0,1,\ldots,n_0\right\}. $$ The key fact is that $R$ does not depend on $n$. So
\begin{align}
\|(T_1+T_2)^n\|
&\leq \sum_{k=1}^n {n \choose k} \|T_1^k\|\,\| T_2^{n-k}\|\\ \ \\
&\leq \sum_{k=1}^{n_0-1} {n\choose k}c_1^k\,d_2^{n-k}+\sum_{k=n_0}^{n-n_0}{n\choose k}d_1^k\,d_2^{n-k}+\sum_{k=n-n_0+1}^n{n\choose k}d_1^k\,c_2^{n-k}\\ \ \\
&= \sum_{k=1}^{n_0-1} {n\choose k}d_1^k\,d_2^{n-k}\,\left(\frac{c_1}{d_1}\right)^k+\sum_{k=n_0}^{n-n_0}{n\choose k}d_1^k\,d_2^{n-k}+\sum_{k=n-n_0+1}^n{n\choose k}d_1^k\,d_2^{n-k}\,\left(\frac{c_2}{d_2}\right)^{n-k}\\ \ \\
&\leq R\,\sum_{k=0}^n{n\choose k}\,d_1^kd_2^{n-k}
=R\,(d_1+d_2)^n.
\end{align}
Then
$$
r(T_1+T_2)=\lim_{n\to\infty}\|(T_1+T_2)^n\|^{1/n}=(d_1+d_2)\,\lim_{n\to\infty}R^{1/n}=d_1+d_2=r(T_1)+r(T_2)+2\epsilon.
$$
As $\epsilon$ was arbitrary, we get $$r(T_1+T_2)\leq r(T_1)+r(T_2).$$