There is of course the homely old Integral Test:
$$ \ \int_1^{\infty} \ \ \frac{(\log x)^2}{x^2} \ \ dx \ \ = \ \ \left[ - \ \frac{(\log x)^2 \ + \ 2 \log x \ + \ 2 \ }{x} \right]_1^{\infty} \ \ = \ \ 2 \ \ . $$
I'm not sure what the remark about the "integration test doesn't seem to help" is intended to mean: one must just be a bit patient with integration-by-parts and l'Hopital or some other limit technique.
In fact, one finds that the result can be generalized to
$$ \ \int_1^{\infty} \ \frac{(\log x)^p}{x^q} \ \ dx \ \ $$
convergent for integers $ \ p \ \ge \ 1 \ $ and $ \ q \ \ge \ 2 \ $ . We have $$ \ \int_1^{\infty} \ \ \frac{(\log x)^p}{x^2 } \ \ dx \ \ = \ \ p! \ \ , $$
[EDIT: This last result can be demonstrated by connecting the reduction formula,
$$ \ \int \ \ \frac{(\log x)^p}{x^2 } \ \ dx \ \ = \ \ -\frac{(\log x)^p}{x} \ \ + \ \ p \ \int \ \ \frac{(\log x)^{p-1}}{x^2 } \ \ dx \ \ , $$
with our earlier expression for $ \ p \ = \ 2 \ $ . ]
and $$ \frac{(\log x)^p}{x^2 } \ \ge \ \frac{(\log x)^p}{x^q } $$
for $ \ q \ > \ 2 \ $ and $ \ x \ \ge \ 1 \ $ . This establishes our convergence proposition for the improper integrals (by integral comparison), so
$$ \sum_{n=1}^{\infty} \frac{(\log n)^p}{n^q} $$
converges for integers $ \ p \ \ge \ 0 \ $ and $ \ q \ \ge \ 2 \ $ .