1

$\lim_{x\to\infty}{{\log \log \left(1+{{1}\over{x}}\right)}\over{\log x}}$

I cant do it. If somebody can do the question for me. I need do to the test but I not allowed use l'hopital.

4 Answers4

1

Since $\log(1+1/x) \approx 1/x $ for large $x$ (easy to show from $\log(1+z) =\int_1^{1+z} \frac{dy}{y} $, from which you get $\frac{z}{1+z} < \log(1+z) < z$), ${{\log \log \left(1+{{1}\over{x}}\right)}\over{\log x}} \approx {{\log (1/x)}\over{\log x}} = {-\log (x)\over{\log x}} \to -1 $.

marty cohen
  • 107,799
1

By multiplying x,

$\displaystyle\lim \limits_{x \to \infty} \frac{\log\log(1+\frac{1}{x})}{\log x} = \lim \limits_{x \to \infty} \frac{\log \frac{x\log (1+1/x)}{x}}{\log x} = \lim \limits_{x \to \infty} \frac{\log\log(1+1/x)^x-\log x}{\log x} = (\log\log e) (0) - 1$

$=-1$

lcn
  • 219
1

In THIS ANSWER, I used on the limit definition of the exponential function and Bernoulli's Inequality to show that the logarithm function satisfies the inequalities

$$\frac{x-1}{x}\le \log(x)\le x-1 \tag 1$$

for $x>0$.


Using $(1)$, it is straightforward to show that

$$\frac{-x}{x-1}\le \frac{\log\left(\log\left(1+\frac1x\right)\right)}{\log(x)}\le \frac{1/x-1}{\frac{x-1}{x}}=-1$$

whereupon application of the squeeze theorem yields the coveted limit

$$\lim_{x\to \infty} \frac{\log\left(\log\left(1+\frac1x\right)\right)}{\log(x)}=-1$$

Note that we did not rely on L'Hospital's Rule, expansions, or other tools from differential calculus. Rather, we only used the inequality in $(1)$, which was obtained from elementary analysis, and the squeeze theorem.

Mark Viola
  • 179,405
0

Use equivalents:

$\log(1+u)\sim_0 u$, hence $\log\Bigl(1+\dfrac 1x\Bigr)\sim_\infty\dfrac1x$. As it doesn't approach $1$, there results that $$\log\log\Bigl(1+\dfrac 1x\Bigr)\sim_\infty -\log x,\enspace\text{whence}\quad \frac{\log\log\Bigl(1+\dfrac 1x\Bigr)}{\log x}\sim_\infty\frac{-\log x}{\log x}=-1.$$

Bernard
  • 175,478