Let $f:\mathbb{R}^2\to\mathbb{R}$ and $(p,q)\in\mathbb{R}^2$ such that both $f_x$ and $f_y$ exist at $(p,q)$. Suppose $f_x$ is continuous at $(p,q)$, show that the directional derivative $D_vf$ at $(p,q)$ exists for all (nonzero) $v\in\mathbb{R}^2$.
My attempt:
$f_x(p,q)=\lim_{h\to 0}\frac{f(p+h,q)-f(p,q)}{h}$ exists.
$f_y(p,q)=\lim_{h\to 0}\frac{f(p,q+h)-f(p,q)}{h}$ exists.
Let $v=(v_1,v_2)\in\mathbb{R}^2$.
$\begin{align*} D_vf(p,q)&=\lim_{h\to 0}\frac{f(p+hv_1,q+hv_2)-f(p,q)}{h}\\ &=\lim_{h\to 0}\frac{f(p+hv_1,q+hv_2)-f(p,q+hv_2)}{h}+\lim_{h\to 0}\frac{f(p,q+hv_2)-f(p,q)}{h} \end{align*}$
I am stuck here, and I am not entirely sure this is the right track to begin with.
Thanks for any help!