Define $$A = \begin{pmatrix} 8 & −4 & 3/2 & 2 & −11/4 & −4 & −4 & 1 \\ 2 & 2 & 1 & 0 & 1 & 0 & 0 & 0 \\ −9 & 8 & 1/2 & −4 & 31/4 & 8 & 8 & −2 \\ 4 & −6 & 2 & 5 & −7 & −6 & −6 & 0 \\ −2 & 0 & −1 & 0 & 1/2 & 0 & 0 & 0 \\ −1 & 0 & −1/2 & 0 & −3/4 & 3 & 1 & 0 \\ 1 & 0 & 1/2 & 0 & 3/4 & −1 & 1 & 0 \\ 2 & 0 & 1 & 0 & 0 & 0 & 0 & 5 \\ \end{pmatrix} \in M_8(\mathbb R)$$
Justify why there is a matrix $B$ such that $B^2 = A$.
I think it has something to do with the Jordan normal form so I found it.
\begin{pmatrix} 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 5 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 5 \\ \end{pmatrix}
(I know the ones are under the diagonal, but I think it doesn't make a difference.)
I have no idea what should I do next, a help will be appreciated!
Thanks!