3

As the title states, the problem at hand is proving the following:

$X\ge 0, r>0\Rightarrow E(X^r)=r\int_0^{\infty}x^{r-1}P(X>x)dx$


Attempt/thoughts on a solution

I am guessing this is an application of Fubini's Theorem, but wouldn't that require writing $P(X>x)$ as an expectation? If so, how is this accomplished?

Thoughts and help are appreciated.

Justin
  • 1,694
  • 3
  • 18
  • 36

1 Answers1

2

Proof: Consider the expectation of the identity $$ X^r=r\int_0^{X}x^{r-1}\,\mathrm dx=r\int_0^{+\infty}x^{r-1}\mathbf 1_{X>x}\,\mathrm dx. $$

Did
  • 279,727