Following the comment posted by @Achillehui, we recognize that the series $\sum_{k=1}^\infty \frac{x^k}{\sqrt{k}}$ is a series representation of the polylogarithm function $\text{Li}_{1/2}(x)$, for $|x|<1$.
An alternative series representation (SEE HERE) of $\text{Li}_{1/2}(x)$ is given by
$$\text{Li}_{1/2}(x)=\sqrt{\frac{\pi}{-\log(x)}}+\sum_{k=0}^\infty \frac{\zeta(1/2-k)}{k!}\log^k(x) \tag 1$$
for $|x|<e^{2\pi}$.
Note that we can expand the logarithm function around $x=1$ as
$$\begin{align}
-\log(x)&=(1-x)\left(1+\sum_{k=2}^\infty\frac{(-1)^{k-1}(x-1)^{k-1}}{k}\right)\\\\
&=(1-x)\left(1+O\left((x-1)\right)\right) \tag 2
\end{align}$$
Using $(2)$ in $(1)$, we obtain
$$\text{Li}_{1/2}(x)=\sqrt{\frac{\pi}{1-x}}++\zeta(1/2)+O\left(\sqrt{1-x}\right)+\sum_{k=1}^\infty \frac{\zeta(1/2-k)}{k!}\log^k(x) \tag 3$$
Finally, it is easy to see from $(3)$ that
$$\lim_{x\to 1^-}\left(\sqrt{\frac{\pi}{1-x}}-\sum_{k=1}^\infty \frac{x^k}{\sqrt{k}}\right)=-\zeta(1/2)$$
And we are done!