Evaluation of $\displaystyle \lim_{n\rightarrow \infty}\prod^{n}_{k=1}\frac{1}{1-\tan^2(2^{-n})}$
$\bf{My\; Try::}$ Let $p_{k} = \displaystyle \frac{1}{1-\tan^2(2^{-n})} = \frac{\cos^2(2^{-k})}{\cos(2^{-k+1})}$
So $\displaystyle p_{1}p_{2}p_{3}...........p_{n} = \frac{\cos^2(2^{-1})}{\cos(2^{0})}\cdot \frac{\cos^2(2^{-2})}{\cos(2^{-1})}\cdot \frac{\cos^2(2^{-3})}{\cos(2^{-2})}\cdot.........\frac{\cos^2(2^{-n})}{\cos^2(2^{-n+1})}$
Now How can I solve after that, Help required, Thanks