Method 1.
One may recall that,
$$
|\arctan u|\leq \frac{\pi}2, \quad u \in \mathbb{R},
$$ giving
$$
\left|\int_1^\infty\frac{\arctan(9x)}{1+9x^3}\:dx\right|\leq \frac{\pi}2\int_1^\infty\frac1{1+9x^3}\:dx\leq \frac{\pi}{18}\int_1^\infty\frac{dx}{x^3}<\infty,
$$ the given integral is thus convergent.
Method 2. Dirichlet's test for integrals.
We may write the given integrand as
$$
\frac{\arctan(9x)}{1+9x^3}=\frac{\arctan(9x)}{x^2}\times\frac{x^2}{1+9x^3}.
$$ One has
$$
\left|\int_a^b\frac{\arctan (9x)}{x^2} \:dx\right|\leq \frac{\pi}{2}\left|\int_a^b\frac{1}{x^2} \:dx\right|\leq \pi, \quad b\geq a\geq1,
$$ and one has
$$
x \mapsto \frac{x^2}{1+9x^3}
$$ decreasing over $[1,\infty)$, tending to $0$ as $x \to \infty$. The given integral is thus convergent.