Possible Duplicate:
Finding the limit of $\frac {n}{\sqrt[n]{n!}}$
Evaluate $$\lim_{n \to \infty }\frac{(n!)^{1/n}}{n}.$$
Can anyone help me with this? I have no idea how to start with. Thank you.
Possible Duplicate:
Finding the limit of $\frac {n}{\sqrt[n]{n!}}$
Evaluate $$\lim_{n \to \infty }\frac{(n!)^{1/n}}{n}.$$
Can anyone help me with this? I have no idea how to start with. Thank you.
Let's work it out elementarily by wisely applying Cauchy-d'Alembert criterion:
$$\lim_{n\to\infty} \frac{n!^{\frac{1}{n}}}{n}=\lim_{n\to\infty}\left(\frac{n!}{n^n}\right)^{\frac{1}{n}} = \lim_{n\to\infty} \frac{(n+1)!}{(n+1)^{(n+1)}}\cdot \frac{n^{n}}{n!} = \lim_{n\to\infty} \frac{n^{n}}{(n+1)^{n}} =\lim_{n\to\infty} \frac{1}{\left(1+\frac{1}{n}\right)^{n}}=\frac{1}{e}. $$
Also notice that by applying Stolz–Cesàro theorem you get the celebre limit:
$$\lim_{n\to\infty} (n+1)!^{\frac{1}{n+1}} - (n)!^{\frac{1}{n}} = \frac{1}{e}.$$
The sequence $L_{n} = (n+1)!^{\frac{1}{n+1}} - (n)!^{\frac{1}{n}}$ is called Lalescu sequence, after the name of a great Romanian mathematician, Traian Lalescu.
Q.E.D.
We can use Stirling's Approximation for the factorial:
$$n!\sim\sqrt{2\pi n}\left(\frac{n}{{\rm e}}\right)^{n}$$
Therefore, your expression becomes:
$$\lim_{n\to\infty}{\left(\frac{1}{n}\left(\sqrt{2\pi n}\left(\frac{n}{\rm e}\right)^{n}\right)^{\frac{1}{n}}\right)}=\lim_{n\to\infty}{\left(\frac{1}{n}\frac{n}{\rm e}\sqrt[n]{\sqrt{2\pi n}}\right)}$$
We know that $\lim_{n\to\infty}{\sqrt[n]{an}}=1$, so we have:
$$\lim_{n\to\infty}{\left(\frac{1}{\rm e}\sqrt[n]{\sqrt{2\pi n}}\right)}=\frac{1}{\rm e}$$
Hope this helps!
With an integral test for convergence: $\displaystyle \int_1^n \ln(x)dx \leq \sum\limits_{k=2}^n \ln(k) = \ln(n!) \leq \int_2^{n+1} \ln(x)dx$.
You can deduce that $\ln(n!)=n\ln(n)-n + o(n)$. So $\displaystyle \lim\limits_{n\to + \infty} \frac{(n!)^{1/n}}{n}= e^{-1}$.