Let $f(x)=\ln(x+1)$ then
(a) find the fourth Taylor polynomial of $f$ at $x=1$ and
(b) use part (a) find the approximate the value of $\ln(2.2)$ correct 4 decimal
(c) Find an estimate for the error in part(b) using Taylor's theorem
Taylor series for the function
$$\ln(1+x)=\int_0^x\frac{dt}{t+1}=\int_0^x\sum_{n=0}^\infty (-1)^n t^ndt=\sum_{n=0}^\infty(-1)^n\frac{x^{n+1}}{n+1}$$ then how do we proceed?