If $\cos \alpha\;,\cos \beta\;,\cos \gamma$ are the roots of the equation $9x^3-9x^2-x+1=0\;, \alpha,\beta,\gamma \in \left[0,\pi\right]$
Then value of $ \left(\sum \alpha\;,\sum \cos \alpha\right)$
$\bf{My\; Try::}$ Using Vieta formula::
$$\cos \alpha+\cos \beta+\cos \gamma = 1$$ and $$\cos \alpha\cdot \cos \beta+\cos \beta\cdot \cos \gamma+\cos \gamma\cdot \cos \alpha = -\frac{1}{9}$$
and $$\cos \alpha\cdot \cos \beta\cdot \cos \gamma = -\frac{1}{9}$$
Now How can i calculate $\alpha+\beta+\gamma = $, Help required, Thanks