If $H_x=1+\frac{1}{2}+\cdots+\frac{1}{x}$ (i.e. the $x^{th}$ Harmonic Number), we see
$$
\lim_{n \to \infty} \sum_{m=n}^{2n} \frac{1}{m}=
\lim_{n \to \infty} \frac{1}{n}+\frac{1}{n+1}+\cdots+\frac{1}{2n}=
\lim_{n \to \infty}\left(1+\frac{1}{2}+\cdots + \frac{1}{2n}\right)-\left(1+\frac{1}{2}+\cdots+\frac{1}{n-1}\right)=
\lim_{n \to \infty} H_{2n}-H_{n-1}
$$
You may recall that
$$\log x +\gamma+O(1)= H_x \quad (\text{as } x\to\infty)$$
Now, because $m \ge n \to \infty$ we may use $\log x$ instead of $H_x$. Then we have
$$
\lim_{n \to \infty} \sum_{m=n}^{2n} \frac{1}{m}=
\lim_{n \to \infty} H_{2n}-H_{n-1}=
\lim_{n \to \infty} (\log (2n)+\gamma)-(\log (n-1)+\gamma)=
\lim_{n \to \infty} \log (2)+\log (n)-\log (n-1)=
\log (2)
$$
A quick numerical check seems to confirm this: If $n=1000$, the sum approximately equals $0.6938972430$ - three correct decimal places of $\log 2$.