If $(X,M,\mu)$ is a measure space and $\{E_j\}_{1}^{\infty}\subset M$, then $\mu(\liminf E_j) \leq \liminf \mu(E_j)$.
Attempted proof - Let $(X,M,\mu)$ be a measure space and $\{E_j\}_{1}^{\infty}\subset M$. Notice that $\bigcap_{j=k}^{\infty} E_j = \cap E_k\cap E_{k+1}\cap\ldots$ which is increasing so $\{\bigcap_{1}^{\infty}E_k\}$ is an increasing sequence of sets so $\mu(\bigcap_{j=k}^{\infty}E_j) \leq \mu(E_k)$. We know that $$\liminf E_j = \bigcup_{k=1}^{\infty}\bigcap_{j=k}^{\infty}E_j$$ So $$\mu(\liminf E_j) = \mu\left(\bigcup_{k=1}^{\infty}\left(\bigcap_{j=k}^{\infty}E_j\right)\right) = \lim_{k\rightarrow \infty}\mu\left(\bigcap_{j=k}^{\infty}E_j\right) = \liminf\mu\left(\bigcap_{j=k}^{\infty}E_j\right) \leq \liminf\mu(E_j)$$ Therefore we must have $$\mu(\liminf E_j) \leq \liminf \mu(E_j)$$
I am somewhat skeptical of this result if anyone could provide some reasoning I would greatly appreciate it.