3

Is it true that for any locally integrable function $f \in L_{\mathrm{loc}}^1(\mathbb{R}^2)$, if $$ \int_a^b \int_c^d f(x,y) \,\textrm{d}x \,\textrm{d}y=0 \hspace{6mm} \textrm{for all $a,b,c,d$ with $|b-a||d-c|=1$,} $$ then $f=0\,$ a.e.?

1 Answers1

0

How about this attempt at an counter example (If wrong please just remove). $f:(x,y) \mapsto cos 2\pi\, x$. Then $$ \int_{[y_0+1]\times[x_0+1]} f\, dx\,dy = \int\left[\frac{sin 2\pi\, x}{2\pi} \right]^{x_0+1}_{x_0}\, dy = 0 \qquad \forall x_0,y_0 \in \mathbb{R}, $$ yet $f=0$ a.e. is wrong.

be5tan
  • 361
  • The integral of this $f$ over an axis-aligned unit square is zero, but not every unit-area rectangle is a square, much less axis-aligned. :) – Andrew D. Hwang May 14 '16 at 11:40