I know this question has been asked before and has been answered here and here.
I have a slightly different formulation of the Hockey Stick Identity and would like some help with a combinatorial argument to prove it. First I have this statement to prove: $$ \sum_{i=0}^r\binom{n+i-1}{i}=\binom{n+r}{r}. $$ I already have an algebraic solution here using the Pascal Identity: $$ \begin{align*} \binom{n+r}{r}&=\binom{n+r-1}{r}+\binom{n+r-1}{r-1}\\ &=\binom{n+r-1}{r}+\left[\binom{n+(r-1)-1}{(r-1)}+\binom{n+(r-1)-1}{r-2}\right]\\ &=\binom{n+r-1}{r}+\binom{n+(r-1)-1}{(r-1)}+\left[\binom{n+(r-2)-1}{r-2}+\binom{n+(r-2)-1}{(r-2)-1}\right]\\ &\,\,\,\vdots\\ &=\binom{n+r-1}{r}+\binom{n+(r-1)-1}{(r-1)}+\binom{n+(r-2)-1}{(r-2)-1}+\binom{n+(r-3)-1}{r-3}+\cdots+\left[\binom{n+1-1}{1}+\binom{n+1-1}{0}\right]\\ &=\binom{n+r-1}{r}+\binom{n+(r-1)-1}{(r-1)}+\binom{n+(r-2)-1}{(r-2)-1}+\binom{n+(r-3)-1}{r-3}+\cdots+\binom{n+1-1}{1}+\binom{n-1}{0}\\ &=\sum_{i=0}^r\binom{n+i-1}{i}. \end{align*} $$
I have read both combinatorial proofs in the referenced answers above, but I cannot figure out how to alter the combinatorial arguments to suit my formulation of the Hockey Stick Identity. Basically, this formulation gives the "other" hockey stick. Any ideas out there?