Are the matrices $\left[\begin{array}{rr} 1 & 1 \\ p & 1 \end{array}\right]$ and $\left[\begin{array}{rr} 1 & q \\ 1 & 1 \end{array}\right] $conjugate elements of $GL_2(\Bbb R)$? Are they conjugate elements of $SL_2(\Bbb R)$?
My solution:
For the first question, let $$\left[\begin{array}{cc} a & b\\c&d\end{array}\right]\left[\begin{array}{cc} 1 & 1 \\ p & 1\end{array}\right]=\left[\begin{array}{cc} 1 & q \\ 1 & 1\end{array}\right]\left[\begin{array}{cc} a & b\\c&d\end{array}\right]$$ where $ad-bc\ne0$.
Then we have $$\left[\begin{array}{cc}a+bp &a+b\\c+dp&c+d\end{array}\right]=\left[\begin{array}{cc}a+cq & b+dq\\a+c&b+d\end{array}\right]$$
$$\left[\begin{array}{cc}bp &a\\dp&c\end{array}\right]=\left[\begin{array}{cc}cq & dq\\a&b\end{array}\right]$$
So $$\left\{\begin{array}{c}b=c\\b(p-q)=0\\a=dq=dp\end{array}\right.$$
If $p\ne q$, then $a=b=c=d=0$.
So they are not in general conjugate unless $p=q$. In this case, we have $$\left(\begin{array}{cc}dp&b\\b&d\end{array}\right)\left(\begin{array}{cc}1&1\\p&1\end{array}\right)=\left(\begin{array}{cc}1&p\\1&1\end{array}\right)\left(\begin{array}{cc}dp&b\\b&d\end{array}\right)$$ provided $d^2p-b^2\ne0$, which can always be satisfied.
For the second question, Suppose $$\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\left(\begin{array}{cc}1&1\\p&1\end{array}\right)\left(\begin{array}{cc}a&b\\c&d\end{array}\right)^{-1}=\left(\begin{array}{cc}1&q\\1&1\end{array}\right)$$
Then by taking determinant, we have $p=q$. So similarly we have $$\left(\begin{array}{cc}dp&b\\b&d\end{array}\right)\left(\begin{array}{cc}1&1\\p&1\end{array}\right)\left(\begin{array}{cc}dp&b\\b&d\end{array}\right)^{-1}=\left(\begin{array}{cc}1&p\\1&1\end{array}\right)$$ provided that $d^2p-d^2=1$, which can always be satisfied unless $p=0$.
So in conclusion,
(1) $$\left(\begin{array}{cc} 1 & 1 \\ p & 1 \end{array}\right)$$ and $$\left(\begin{array}{cc} 1 & q \\ 1 & 1 \end{array}\right)$$ are conjugate in $GL_n(R)$ if and only if $p = q$.
(2) They are conjugate in $SL_n(R)$ if and only $p=q\ne0$.
Is the above conclusion correct? Thanks!
\bigg
to manually resize the brace, you can use\left
. But you'll need an empty delimiter since you don't have a corresponding\right
brace. For example\left \{ [stuff here] \right.
, using the period.
instead of the expected right brace. – pjs36 May 13 '16 at 20:36\pmatrix{a&b\\c&d}
for matrices, saves a lot of the hassle (at least in MathJax). – Ben Grossmann May 13 '16 at 20:37