1

Suppose that $x\ne 1$ and $n\in\mathbb{N}^*$. Prove with induction that $$\sum_{k=0}^{n-1}x^{k}=\frac{x^n-1}{x-1}$$

It seems simple but I have tried for I don't know how long by now... Anyone can manage this?

Blind
  • 1,116

2 Answers2

0

Let $S(n)$ be the statement: $\displaystyle\sum_{k=0}^{n-1}x^{k}=\dfrac{x^{n}-1}{x-1}$

Basis step: $S(1)$:

LHS: $\displaystyle\sum_{k=0}^{(1)-1}x^{k}=x^{0}$

$\hspace{23 mm}=1$

RHS: $\dfrac{x^{(1)}-1}{x-1}=\dfrac{x-1}{x-1}$

$\hspace{27 mm}=1$

$\hspace{73.5 mm}$ LHS $=$ RHS $\hspace{1 mm}$ (verified.)

Inductive step:

Assume $S(m)$ is true, i.e. assume that $\displaystyle\sum_{k=0}^{m-1}x^{k}=\dfrac{x^{m}-1}{x-1}$

$S(m+1)$: $\displaystyle\sum_{k=0}^{(m+1)-1}x^{k}$

$\hspace{17 mm}=\displaystyle\sum_{k=0}^{m}x^{k}$

$\hspace{17 mm}=x^{m}+\displaystyle\sum_{k=0}^{m-1}x^{k}$

$\hspace{17 mm}=x^{m}+\dfrac{x^{m}-1}{x-1}$

$\hspace{17 mm}=\dfrac{x^{m}\hspace{1 mm}(x-1)+x^{m}-1}{x-1}$

$\hspace{17 mm}=\dfrac{x^{m+1}-x^{m}+x^{m}-1}{x-1}$

$\hspace{17 mm}=\dfrac{x^{m+1}-1}{x-1}$

So, $S(m+1)$ is true whenever $S(m)$ is true.

Therefore, $\displaystyle\sum_{k=0}^{n-1}x^{k}=\dfrac{x^{n}-1}{x-1}$.

Tazwar
  • 671
0

We give some hints for your question:

1) $S_{n+1}-S_n=x^n$

2) $\displaystyle\frac{x^{n+1}-1}{x-1}-\displaystyle\frac{x^{n}-1}{x-1}=x^n$.

Blind
  • 1,116