4

Few days ago I thought about proof of :$$\frac{1}{3}+\frac{1}{3\cdot 5} + \dots = \sqrt{\frac{e\pi}{2}}$$. I tried to represent my sum as : $$\sum\frac{2n!!}{(2n+1)!}$$, so after I was thinking about Wallis product, but that doesn't give me anything.

May anyone give me a hint what is the best way to start my proof?

openspace
  • 6,470

1 Answers1

1

$$\begin{eqnarray*}\sum_{n\geq 1}\frac{(2n)!!}{(2n+1)!}=\sum_{n\geq 1}\frac{2^n \Gamma(n+1)}{\Gamma(2n+2)}&=&\sum_{n\geq 1}\frac{2^n}{n!}\,B(n+1,n+1)\\&=&\int_{0}^{1}\sum_{n\geq 1}\frac{2^n x^n(1-x)^n}{n!}\,dx\\&=&-1+\int_{0}^{1}\exp\left(2x(1-x)\right)\,dx\\&=&-1+\int_{-1/2}^{1/2}\exp\left(\frac{1}{2}-2z^2\right)\,dz\\&=&\color{red}{-1+\sqrt{\frac{e\pi}{2}}\,\text{Erf}\left(\frac{1}{\sqrt{2}}\right)}.\end{eqnarray*} $$

Jack D'Aurizio
  • 353,855