Here I show that $1.9<Lim_{n→∞} a_n<2$ if:
$a_n=\sqrt{2+\sqrt [3]{3+\sqrt[4]{4+ . . . +\sqrt[n]{n}}}}$
We use following inequalities:
$\sqrt[k]{k+1}>1$ ; $\sqrt[k]k<\sqrt[k]{k+2}$. . (for $k>2$)
The first one is clear and the second one can be proved by induction. The series of numbers of $a_n $is increasing; using inequalities we may write:
$a_n=\sqrt{2+\sqrt [3]{3+ . . . +\sqrt[n]{n}}}<\sqrt{2+\sqrt [3]{3+ . . . +\sqrt[n-1]{n-1+2}}}< . . .<\sqrt{2+\sqrt[3]{5}}$
Therefore aeries $a_n $ has a limit equal to $a_0$ such that we have:
$a_0<\sqrt{2+\sqrt[3]{5}}<2$
Using inequalities we have:
$a_n>\sqrt{2+\sqrt [3]{3+ . . . +\sqrt[n-1]{n}}}>\sqrt{2+\sqrt[3]{3+\sqrt[4]5}}$
Therefore:
$a_0>\sqrt{2+\sqrt[3]{3+\sqrt[4]5}}$
We can easily see that:
$\sqrt{2+\sqrt[3]{3+\sqrt[4]5}}>1.9$
That finally gives:
$1,9<a_n<2$
and for you question:
$2.9<a_1+1<3$
3: , 2.85533004349830 \ 4: , 2.90798456765468 \ 5: , 2.91148304056081 \ 6: , 2.91163449677407 \ 7: , 2.91163911038987 \ 8: , 2.91163921441793 \ 9: , 2.91163921622082 \ 10: , 2.91163921624555 \ 11: , 2.91163921624582 \ 12: , 2.91163921624582 $$ ($n$ and $f(n)$) – Chip May 10 '16 at 01:46